Classifying Location Points as Daily Activities using Simultaneously Optimized DBSCAN-TE Parameters.

Findings Pub Date : 2024-04-12 DOI:10.32866/001c.116197
Gregory S. Macfarlane, Gillian Riches, Emily K. Youngs, Jared A. Nielsen
{"title":"Classifying Location Points as Daily Activities using Simultaneously Optimized DBSCAN-TE Parameters.","authors":"Gregory S. Macfarlane, Gillian Riches, Emily K. Youngs, Jared A. Nielsen","doi":"10.32866/001c.116197","DOIUrl":null,"url":null,"abstract":"Location-based services data collected from mobile phones represent a potentially powerful source of travel behavior data, but transforming the location points into semantic activities – where and when activities occurred – is non-trivial. Existing algorithms to label activities require multiple parameters calibrated to a particular dataset. In this research, we apply a simulated annealing optimization procedure to identify the values of four parameters used in a density-based spatial clustering with additional noise and time entropy (DBSCAN-TE) algorithm. We develop a spatial accuracy scoring function to use in the calibration methodology and identify paths for future research.","PeriodicalId":508951,"journal":{"name":"Findings","volume":"103 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.116197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location-based services data collected from mobile phones represent a potentially powerful source of travel behavior data, but transforming the location points into semantic activities – where and when activities occurred – is non-trivial. Existing algorithms to label activities require multiple parameters calibrated to a particular dataset. In this research, we apply a simulated annealing optimization procedure to identify the values of four parameters used in a density-based spatial clustering with additional noise and time entropy (DBSCAN-TE) algorithm. We develop a spatial accuracy scoring function to use in the calibration methodology and identify paths for future research.
利用同时优化的 DBSCAN-TE 参数将位置点分类为日常活动。
从手机中收集的基于位置的服务数据是旅行行为数据的潜在强大来源,但将位置点转化为语义活动(即活动发生的地点和时间)并非易事。现有的活动标签算法需要根据特定数据集校准多个参数。在这项研究中,我们采用模拟退火优化程序来确定基于密度的空间聚类算法(DBSCAN-TE)中使用的四个参数值。我们开发了一个空间精度评分函数,用于校准方法,并确定了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信