Survey on the quality of automatic parameter detection of PID controller for DC motor using Genetic Algorithm and Particle Swarm Optimization

Nhat Quang Dao
{"title":"Survey on the quality of automatic parameter detection of PID controller for DC motor using Genetic Algorithm and Particle Swarm Optimization","authors":"Nhat Quang Dao","doi":"10.46501/ijmtst1004033","DOIUrl":null,"url":null,"abstract":"This article presents the results of a study on selecting optimal PID parameters tuned by Genetic Algorithms (GA) and\nParticle Swarm Optimization (PSO) used for a DC motor. The simulating controller response results show that the PID - GA and\nPID - PSO combination algorithms are superior to traditional methods. The result also allows for the selection of the optimal\nalgorithm - combining the PSO - PID to design a controller that has smaller settling error but larger overshoot and settling time\ncompared to GA-PID method. The simulation was taken in Matlab environments","PeriodicalId":13741,"journal":{"name":"International Journal for Modern Trends in Science and Technology","volume":"70 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Modern Trends in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46501/ijmtst1004033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the results of a study on selecting optimal PID parameters tuned by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) used for a DC motor. The simulating controller response results show that the PID - GA and PID - PSO combination algorithms are superior to traditional methods. The result also allows for the selection of the optimal algorithm - combining the PSO - PID to design a controller that has smaller settling error but larger overshoot and settling time compared to GA-PID method. The simulation was taken in Matlab environments
利用遗传算法和粒子群优化对直流电机 PID 控制器的自动参数检测质量进行调查
本文介绍了通过遗传算法(GA)和粒子群优化(PSO)为直流电机选择最佳 PID 参数的研究结果。模拟控制器响应结果表明,PID - GA 和 PID - PSO 组合算法优于传统方法。该结果还允许选择最佳算法--结合 PSO - PID 来设计一个控制器,与 GA-PID 方法相比,该控制器具有较小的沉降误差,但过冲和沉降时间较大。仿真在 Matlab 环境中进行
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信