Enhancing Fish Auction with Deep Learning and Computer Vision: Automated Caliber and Species Classification

Fishes Pub Date : 2024-04-13 DOI:10.3390/fishes9040133
Javier Jareño, G. Bárcena-González, J. Castro-Gutiérrez, R. Cabrera-Castro, Pedro L. Galindo
{"title":"Enhancing Fish Auction with Deep Learning and Computer Vision: Automated Caliber and Species Classification","authors":"Javier Jareño, G. Bárcena-González, J. Castro-Gutiérrez, R. Cabrera-Castro, Pedro L. Galindo","doi":"10.3390/fishes9040133","DOIUrl":null,"url":null,"abstract":"The accurate labeling of species and size of specimens plays a pivotal role in fish auctions conducted at fishing ports. These labels, among other relevant information, serve as determinants of the objectivity of the auction preparation process, underscoring the indispensable nature of a reliable labeling system. Historically, this task has relied on manual processes, rendering it vulnerable to subjective interpretations by the involved personnel, therefore compromising the value of the merchandise. Consequently, the digitization and implementation of an automated labeling system are proposed as a viable solution to this ongoing challenge. This study presents an automatic system for labeling species and size, leveraging pre-trained convolutional neural networks. Specifically, the performance of VGG16, EfficientNetV2L, Xception, and ResNet152V2 networks is thoroughly examined, incorporating data augmentation techniques and fine-tuning strategies. The experimental findings demonstrate that for species classification, the EfficientNetV2L network excels as the most proficient model, achieving an average F-Score of 0.932 in its automatic mode and an average F-Score of 0.976 in its semi-automatic mode. Concerning size classification, a semi-automatic model is introduced, where the Xception network emerges as the superior model, achieving an average F-Score of 0.949.","PeriodicalId":505604,"journal":{"name":"Fishes","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fishes9040133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate labeling of species and size of specimens plays a pivotal role in fish auctions conducted at fishing ports. These labels, among other relevant information, serve as determinants of the objectivity of the auction preparation process, underscoring the indispensable nature of a reliable labeling system. Historically, this task has relied on manual processes, rendering it vulnerable to subjective interpretations by the involved personnel, therefore compromising the value of the merchandise. Consequently, the digitization and implementation of an automated labeling system are proposed as a viable solution to this ongoing challenge. This study presents an automatic system for labeling species and size, leveraging pre-trained convolutional neural networks. Specifically, the performance of VGG16, EfficientNetV2L, Xception, and ResNet152V2 networks is thoroughly examined, incorporating data augmentation techniques and fine-tuning strategies. The experimental findings demonstrate that for species classification, the EfficientNetV2L network excels as the most proficient model, achieving an average F-Score of 0.932 in its automatic mode and an average F-Score of 0.976 in its semi-automatic mode. Concerning size classification, a semi-automatic model is introduced, where the Xception network emerges as the superior model, achieving an average F-Score of 0.949.
利用深度学习和计算机视觉加强鱼类拍卖:自动口径和鱼种分类
在渔港进行的鱼类拍卖中,准确标注标本的种类和大小起着关键作用。除其他相关信息外,这些标签还决定着拍卖准备过程的客观性,凸显了可靠标签系统的不可或缺性。从历史上看,这项工作一直依赖手工操作,容易受到相关人员主观解释的影响,从而损害商品的价值。因此,数字化和自动化标签系统的实施被认为是解决这一持续挑战的可行方案。本研究利用预先训练好的卷积神经网络,提出了一种用于标注物种和尺寸的自动系统。具体来说,结合数据增强技术和微调策略,对 VGG16、EfficientNetV2L、Xception 和 ResNet152V2 网络的性能进行了全面检查。实验结果表明,在物种分类方面,EfficientNetV2L 网络是最优秀的模型,其自动模式的平均 F 分数为 0.932,半自动模式的平均 F 分数为 0.976。在尺寸分类方面,引入了半自动模型,其中 Xception 网络是最优秀的模型,平均 F 分数达到 0.949。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信