{"title":"A modified displacement discontinuity method for seismic wave propagation across rock masses with thin-layer joints","authors":"M. Wang, L. Jia, G.Y. Li, W. Wang, L. Fan","doi":"10.1190/geo2023-0390.1","DOIUrl":null,"url":null,"abstract":"The seismic wave propagation across rock masses with thin-layer joints by modified displacement discontinuity method (M-DDM) is of great importance for geophysical surveys. M-DDM introduces a frequency-dependent effective stiffness to describe the dynamic stressclosure relationship of a thin-layer joint. The study verifies the accuracy of M-DDM in studying seismic wave propagation across rock masses with thin-layer joints. Subsequently, we evaluate the influence of the joint thickness and the incident wave frequency on M-DDM accuracy. We analyze the prediction error of the transmission coefficient obtained with M-DDM. The results demonstrate that the frequency-dependent effective joint stiffness increases with increasing incident wave frequency and decreases with increasing joint thickness. Compared with the traditional DDM, M-DDM more accurately predicts the transmission coefficients of seismic waves propagating across thin-layer joints. The transmission coefficient prediction error obtained based on M-DDM increases with increasing joint thickness and incident wave frequency and is always smaller than that obtained based on DDM. Therefore, our proposed M-DDM can be used to effectively investigate seismic wave propagation across rock masses with thin-layer joints.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0390.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The seismic wave propagation across rock masses with thin-layer joints by modified displacement discontinuity method (M-DDM) is of great importance for geophysical surveys. M-DDM introduces a frequency-dependent effective stiffness to describe the dynamic stressclosure relationship of a thin-layer joint. The study verifies the accuracy of M-DDM in studying seismic wave propagation across rock masses with thin-layer joints. Subsequently, we evaluate the influence of the joint thickness and the incident wave frequency on M-DDM accuracy. We analyze the prediction error of the transmission coefficient obtained with M-DDM. The results demonstrate that the frequency-dependent effective joint stiffness increases with increasing incident wave frequency and decreases with increasing joint thickness. Compared with the traditional DDM, M-DDM more accurately predicts the transmission coefficients of seismic waves propagating across thin-layer joints. The transmission coefficient prediction error obtained based on M-DDM increases with increasing joint thickness and incident wave frequency and is always smaller than that obtained based on DDM. Therefore, our proposed M-DDM can be used to effectively investigate seismic wave propagation across rock masses with thin-layer joints.