On an attraction-repulsion chemotaxis model involving logistic source

Pub Date : 2024-04-14 DOI:10.15672/hujms.1284792
Ebubekir Akkoyunlu
{"title":"On an attraction-repulsion chemotaxis model involving logistic source","authors":"Ebubekir Akkoyunlu","doi":"10.15672/hujms.1284792","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the attraction-repulsion chemotaxis system involving logistic source: u_{t}=Δu-χ∇⋅(u∇υ)+ξ∇⋅(u∇ω)+f(u), ρυ_{t}=Δυ-α₁υ+β₁u, ρω_{t}=Δω-α₂ω+β₂u under homogeneous Neumann boundary conditions with nonnegative initial data (u₀,υ₀,ω₀)∈ (W^{1,∞}(Ω))³, the parameters χ, ξ, α₁, α₂, β₁, β₂>0, ρ≥0 subject to the non-flux boundary conditions in a bounded domain Ω⊂ℝ^{N}(N≥3) with smooth boundary and f(u)≤au-μu² with f(0)≥0 and a≥0, μ>0 for all u>0. Based on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a globally bounded classical solution provided that χ+ξ0 is sufficiently small for all β₁, β₂","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1284792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the attraction-repulsion chemotaxis system involving logistic source: u_{t}=Δu-χ∇⋅(u∇υ)+ξ∇⋅(u∇ω)+f(u), ρυ_{t}=Δυ-α₁υ+β₁u, ρω_{t}=Δω-α₂ω+β₂u under homogeneous Neumann boundary conditions with nonnegative initial data (u₀,υ₀,ω₀)∈ (W^{1,∞}(Ω))³, the parameters χ, ξ, α₁, α₂, β₁, β₂>0, ρ≥0 subject to the non-flux boundary conditions in a bounded domain Ω⊂ℝ^{N}(N≥3) with smooth boundary and f(u)≤au-μu² with f(0)≥0 and a≥0, μ>0 for all u>0. Based on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a globally bounded classical solution provided that χ+ξ0 is sufficiently small for all β₁, β₂
分享
查看原文
关于涉及逻辑源的吸引-排斥趋化模型
本文关注的是涉及逻辑源的吸引-排斥趋化系统:u_{t}=Δu-χ∇⋅(u∇υ)+ξ∇⋅(u∇ω)+f(u),ρυ_{t}=Δυ-α₁υ+β₁u,ρω_{t}=Δω-α₂ω+β₂u 在非负初始数据 (u₀,υ₀,ω₀)∈ (W^{1,∞}(Ω))³ 的均相 Neumann 边界条件下、参数 χ、ξ、α₁、α₂、β₁、β₂>0、ρ≥0,在具有光滑边界的有界域 Ω⊂ℝ^{N}(N≥3)中服从非流动边界条件,且 f(u)≤au-μu²,对于所有 u>0,f(0)≥0 且 a≥0,μ>0。基于最大索波列夫正则性和半群技术,证明只要 χ+ξ0 对于所有 β₁, β₂ 都足够小,系统就会有一个全局有界经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信