Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates

Yuan Guo, Muhammad Idrees, Ji Lin, Hui-jun Li
{"title":"Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates","authors":"Yuan Guo, Muhammad Idrees, Ji Lin, Hui-jun Li","doi":"10.1088/1572-9494/ad3e66","DOIUrl":null,"url":null,"abstract":"\n We present a flexible manipulation and control of solitons via Bose-Einstein condensate. In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential, our investigation reveals the numerical local solutions within the system. By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation, diverse soliton structures emerge within the system. These include plane-wave solitons, two distinct types of stripe solitons, and odd petal solitons with both single and double layers. The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling. Specifically, stripe solitons can maintain stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain stable existence under similar conditions. When rotational frequency is introduced to the system, solitons undergo a transition from stripe solitons to a vortex array characterized by sustained rotation. The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling. As a result, the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3e66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a flexible manipulation and control of solitons via Bose-Einstein condensate. In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential, our investigation reveals the numerical local solutions within the system. By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation, diverse soliton structures emerge within the system. These include plane-wave solitons, two distinct types of stripe solitons, and odd petal solitons with both single and double layers. The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling. Specifically, stripe solitons can maintain stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain stable existence under similar conditions. When rotational frequency is introduced to the system, solitons undergo a transition from stripe solitons to a vortex array characterized by sustained rotation. The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling. As a result, the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.
二维自旋轨道耦合玻色-爱因斯坦凝聚体中的稳定条纹和涡旋孤子
我们提出了一种通过玻色-爱因斯坦凝聚态灵活操纵和控制孤子的方法。在谐波势中存在拉什巴自旋轨道耦合和斥力相互作用的情况下,我们的研究揭示了系统内的局部数值解。在保持零频率旋转的同时,通过操纵斥力相互作用的强度和调整自旋轨道耦合,系统内出现了多种孤子结构。其中包括平面波孤子、两种不同类型的条纹孤子,以及具有单层和双层的奇数花瓣孤子。这些孤子的稳定性与自旋轨道耦合的不同强度密切相关。具体来说,条纹孤子能在自旋轨道耦合增强的区域内保持稳定存在,而花瓣孤子则无法在类似条件下保持稳定存在。当系统中引入旋转频率时,孤子会从条纹孤子过渡到以持续旋转为特征的涡旋阵列。由于自旋轨道耦合,顺时针和逆时针的旋转方向是不等同的。因此,涡旋孤子的特性表现出显著的变化,并能在存在排斥相互作用的情况下保持稳定存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信