Small area estimation of labour force indicators under unit-level multinomial mixed models

María Bugallo, M. D. Esteban, T. Hobza, Domingo Morales, A. Pérez
{"title":"Small area estimation of labour force indicators under unit-level multinomial mixed models","authors":"María Bugallo, M. D. Esteban, T. Hobza, Domingo Morales, A. Pérez","doi":"10.1093/jrsssa/qnae033","DOIUrl":null,"url":null,"abstract":"\n This paper presents a new statistical methodology for the small area estimation of the proportion of employed, unemployed and inactive people, and of unemployment rates. The novel empirical best and plug-in predictors are based on a multinomial mixed model that is fitted to unit-level data. Model parameters are estimated by maximum-likelihood and mean-squared errors by parametric bootstrap. Several simulation experiments are carried out to empirically investigate the properties of these estimators and predictors. Finally, a detailed application to real data from the first Spanish Labour Force Survey of 2021 is included, where the target is to map labour force indicators by province, sex, and age group.","PeriodicalId":506281,"journal":{"name":"Journal of the Royal Statistical Society Series A: Statistics in Society","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A: Statistics in Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new statistical methodology for the small area estimation of the proportion of employed, unemployed and inactive people, and of unemployment rates. The novel empirical best and plug-in predictors are based on a multinomial mixed model that is fitted to unit-level data. Model parameters are estimated by maximum-likelihood and mean-squared errors by parametric bootstrap. Several simulation experiments are carried out to empirically investigate the properties of these estimators and predictors. Finally, a detailed application to real data from the first Spanish Labour Force Survey of 2021 is included, where the target is to map labour force indicators by province, sex, and age group.
单位级多项式混合模型下劳动力指标的小区域估算
本文介绍了一种新的统计方法,用于小范围估算就业、失业和非在业人口的比例以及失业率。新的经验最佳值和插入式预测因子是基于单位级数据拟合的多项式混合模型。模型参数用最大似然法估算,均方误差用参数自举法估算。为了对这些估计器和预测器的特性进行实证研究,我们进行了多次模拟实验。最后,对 2021 年西班牙第一次劳动力调查的真实数据进行了详细应用,目标是绘制各省、性别和年龄组的劳动力指标图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信