Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon

IF 3.2 Q2 ASTRONOMY & ASTROPHYSICS
Galaxies Pub Date : 2024-04-15 DOI:10.3390/galaxies12020018
Francesca Perrotta, M. Torsello, M. Giulietti, A. Lapi
{"title":"Astrochemistry of the Molecular Gas in Dusty Star-Forming Galaxies at the Cosmic Noon","authors":"Francesca Perrotta, M. Torsello, M. Giulietti, A. Lapi","doi":"10.3390/galaxies12020018","DOIUrl":null,"url":null,"abstract":"Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and dusty star-forming galaxies (DSFGs) contain ∼50% of the total stellar mass density. Star formation occurs in dense molecular clouds, and is regulated by a complex interplay between all the ISM components that contribute to the energy budget of a galaxy: gas, dust, cosmic rays, interstellar electromagnetic fields, gravitational field, and dark matter. Molecular gas is the actual link between star-forming gas and its complex environment: much of what we know about star formation comes from observations of molecular line emissions. They provide by far the richest information about the star formation process. However, their interpretation requires complex modeling of the astrochemical networks which regulate molecular formation and establish molecular abundances in a cloud, and a modeling of the physical conditions of the gas in which molecular energy levels become populated. This paper critically reviews the main astrochemical parameters needed to obtain predictions about molecular signals in DSFGs. Molecular lines can be very bright compared to the continuum emission, but radiative transfer models are required to properly interpret the observed brightness. We review the current knowledge and the open questions about the interstellar medium of DSFGs, outlining the key role of molecular gas as a tracer and shaper of the star formation process.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/galaxies12020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Far-infrared and submillimeter observations have established the fundamental role of dust-obscured star formation in the assembly of stellar mass over the past ∼12 billion years. At z = 2–4, the so-called “cosmic noon”, the bulk of star formation is enshrouded in dust, and dusty star-forming galaxies (DSFGs) contain ∼50% of the total stellar mass density. Star formation occurs in dense molecular clouds, and is regulated by a complex interplay between all the ISM components that contribute to the energy budget of a galaxy: gas, dust, cosmic rays, interstellar electromagnetic fields, gravitational field, and dark matter. Molecular gas is the actual link between star-forming gas and its complex environment: much of what we know about star formation comes from observations of molecular line emissions. They provide by far the richest information about the star formation process. However, their interpretation requires complex modeling of the astrochemical networks which regulate molecular formation and establish molecular abundances in a cloud, and a modeling of the physical conditions of the gas in which molecular energy levels become populated. This paper critically reviews the main astrochemical parameters needed to obtain predictions about molecular signals in DSFGs. Molecular lines can be very bright compared to the continuum emission, but radiative transfer models are required to properly interpret the observed brightness. We review the current knowledge and the open questions about the interstellar medium of DSFGs, outlining the key role of molecular gas as a tracer and shaper of the star formation process.
宇宙正午时尘埃状恒星形成星系中分子气体的天体化学性质
远红外和亚毫米波观测已经证实,在过去的 120 亿年里,尘埃遮蔽的恒星形成在恒星质量的集合过程中起着根本性的作用。在z = 2-4,也就是所谓的 "宇宙正午",大部分恒星的形成都被尘埃所笼罩,尘埃恒星形成星系(DSFGs)包含了恒星总质量密度的50%。恒星的形成发生在稠密的分子云中,并受到所有对星系能量预算有贡献的ISM成分(气体、尘埃、宇宙射线、星际电磁场、引力场和暗物质)之间复杂的相互作用的调节。分子气体是恒星形成气体与其复杂环境之间的实际联系:我们对恒星形成的了解大多来自对分子线辐射的观测。迄今为止,它们提供了有关恒星形成过程的最丰富信息。然而,对它们的解释需要对天体化学网络进行复杂的建模,这些网络调控分子的形成并建立云中的分子丰度,还需要对气体的物理条件进行建模,在这些物理条件下,分子能级才会被填充。本文对预测 DSFG 中的分子信号所需的主要天体化学参数进行了严格审查。与连续发射相比,分子线可能非常明亮,但要正确解释观测到的亮度,需要辐射传递模型。我们回顾了有关 DSFG 星际介质的现有知识和悬而未决的问题,概述了分子气体作为恒星形成过程的示踪剂和塑造者的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Galaxies
Galaxies Physics and Astronomy-Astronomy and Astrophysics
CiteScore
4.90
自引率
12.00%
发文量
100
审稿时长
11 weeks
期刊介绍: Es una revista internacional de acceso abierto revisada por pares que proporciona un foro avanzado para estudios relacionados con astronomía, astrofísica y cosmología. Areas temáticas Astronomía Astrofísica Cosmología Astronomía observacional: radio, infrarrojo, óptico, rayos X, neutrino, etc. Ciencia planetaria Equipos y tecnologías de astronomía. Ingeniería Aeroespacial Análisis de datos astronómicos. Astroquímica y Astrobiología. Arqueoastronomía Historia de la astronomía y cosmología. Problemas filosóficos en cosmología.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信