X. Jia, Yibo Wang, C. Fang, Bochang Li, Zhengdong Luo, Yan Liu, Yue Hao, Genquan Han
{"title":"Characteristics of β-(AlxGa1−x)2O3/Ga2O3 dual-metal gate modulation-doped field-effect transistors simulated by TCAD","authors":"X. Jia, Yibo Wang, C. Fang, Bochang Li, Zhengdong Luo, Yan Liu, Yue Hao, Genquan Han","doi":"10.1116/6.0003502","DOIUrl":null,"url":null,"abstract":"β-(AlxGa1−x)2O3/Ga2O3 modulation-doped field-effect transistors (MODFETs) with a dual-metal gate (DMG) architecture are designed, and the electrical characteristics of the DMG device are investigated in comparison with the single-metal gate (SMG) device by the Technology Computer-Aided Design (TCAD) simulation. The results demonstrate that the DMG MODFETs possess a superior transconductance (gm), current gain cut-off frequency (fT), and power gain cut-off frequency (fMAX) than those of SMG transistors, which is attributed to the regulated channel electric field by a DMG structure. With a gate length of 0.1 μm, the peak values of fT/fMAX of the designed DMG MODFET are obtained as 48.6/50.6 GHz, respectively. Moreover, a comprehensive thermal analysis is conducted between the SMG and DMG devices under steady-state and transient conditions. The DMG MODFET exhibits a lower maximum temperature than the SMG counterpart due to the reduced channel electric field, each subjected to the same power dissipation. This finding underscores the potential of the β-(AlxGa1−x)2O3/Ga2O3 MODFET with the DMG architecture as a promising approach for high-power radio frequency operations.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"18 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
β-(AlxGa1−x)2O3/Ga2O3 modulation-doped field-effect transistors (MODFETs) with a dual-metal gate (DMG) architecture are designed, and the electrical characteristics of the DMG device are investigated in comparison with the single-metal gate (SMG) device by the Technology Computer-Aided Design (TCAD) simulation. The results demonstrate that the DMG MODFETs possess a superior transconductance (gm), current gain cut-off frequency (fT), and power gain cut-off frequency (fMAX) than those of SMG transistors, which is attributed to the regulated channel electric field by a DMG structure. With a gate length of 0.1 μm, the peak values of fT/fMAX of the designed DMG MODFET are obtained as 48.6/50.6 GHz, respectively. Moreover, a comprehensive thermal analysis is conducted between the SMG and DMG devices under steady-state and transient conditions. The DMG MODFET exhibits a lower maximum temperature than the SMG counterpart due to the reduced channel electric field, each subjected to the same power dissipation. This finding underscores the potential of the β-(AlxGa1−x)2O3/Ga2O3 MODFET with the DMG architecture as a promising approach for high-power radio frequency operations.