Hu Tan, Xiaoliang Wang, Tingting Xu, Ke Zhao, Lianchao Su, Wenyu Zhang, Zheng Xin
{"title":"Study on the Economic and Technical Optimization of Hybrid Rural Microgrids Integrating Wind, Solar, Biogas, and Energy Storage with AC/DC Conversion","authors":"Hu Tan, Xiaoliang Wang, Tingting Xu, Ke Zhao, Lianchao Su, Wenyu Zhang, Zheng Xin","doi":"10.4108/ew.5803","DOIUrl":null,"url":null,"abstract":"Under the guidance of the 'dual carbon' goals and 'rural revitalization' strategy, the development of microgrids primarily based on wind, solar, and biogas energy is rapidly advancing in rural areas. A critical and challenging area of current research is how to optimally configure the capacity of these microgrids of varying sizes, taking into account the availability of resources in the system's environment and specific climatic conditions, to maximize economic benefits. Based on this, the article constructs a model of a hybrid AC/DC microgrid system powered by wind, solar, and biogas energy. It undertakes multi-objective optimization to achieve the highest utilization of renewable energy, the most economical cost, and the minimum carbon emissions while ensuring the reliability of the system's power supply. The study explores the economically and technically optimal configuration of this microgrid energy system under certain climatic conditions. The results indicate that the optimal configuration for a rural microgrid powered by wind, solar, and biogas energy should include a 2.6 kW biogas generator, 30.00 kW solar panels, 5.24 kW wind turbines, a 2.6 kW battery storage system, and a 10.00 kW bidirectional inverter. This configuration results in the lowest total net cost of the system, achieving optimal outcomes in terms of total net cost, cost per kilowatt-hour, and supply reliability.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"8 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Under the guidance of the 'dual carbon' goals and 'rural revitalization' strategy, the development of microgrids primarily based on wind, solar, and biogas energy is rapidly advancing in rural areas. A critical and challenging area of current research is how to optimally configure the capacity of these microgrids of varying sizes, taking into account the availability of resources in the system's environment and specific climatic conditions, to maximize economic benefits. Based on this, the article constructs a model of a hybrid AC/DC microgrid system powered by wind, solar, and biogas energy. It undertakes multi-objective optimization to achieve the highest utilization of renewable energy, the most economical cost, and the minimum carbon emissions while ensuring the reliability of the system's power supply. The study explores the economically and technically optimal configuration of this microgrid energy system under certain climatic conditions. The results indicate that the optimal configuration for a rural microgrid powered by wind, solar, and biogas energy should include a 2.6 kW biogas generator, 30.00 kW solar panels, 5.24 kW wind turbines, a 2.6 kW battery storage system, and a 10.00 kW bidirectional inverter. This configuration results in the lowest total net cost of the system, achieving optimal outcomes in terms of total net cost, cost per kilowatt-hour, and supply reliability.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.