Uncertainty Quantification and Optimal Design of EV-WPT System Efficiency based on Adaptive Gaussian Process Regression

Xinlei Shang, Linlin Xu, Quanyi Yu, Bo Li, Gang Lv, Yaodan Chi, Tianhao Wang
{"title":"Uncertainty Quantification and Optimal Design of EV-WPT System Efficiency based on Adaptive Gaussian Process Regression","authors":"Xinlei Shang, Linlin Xu, Quanyi Yu, Bo Li, Gang Lv, Yaodan Chi, Tianhao Wang","doi":"10.13052/2023.aces.j.381202","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) is a safe, convenient, and intelligent charging solution for electric vehicles. To address the problem of the susceptibility of transmission efficiency to large uncertainties owing to differences in coil and circuit element processing and actual driving levels, this study proposes the use of adaptive Gaussian process regression (aGPR) for the uncertainty quantification of efficiency. A WPT system efficiency aGPR surrogate model is constructed with a set of selected small-sample data, and the confidence interval and probability density function of the transmission efficiency are predicted. Finally, the reptile search algorithm is used to optimize the structure of the WPT system to improve efficiency.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless power transfer (WPT) is a safe, convenient, and intelligent charging solution for electric vehicles. To address the problem of the susceptibility of transmission efficiency to large uncertainties owing to differences in coil and circuit element processing and actual driving levels, this study proposes the use of adaptive Gaussian process regression (aGPR) for the uncertainty quantification of efficiency. A WPT system efficiency aGPR surrogate model is constructed with a set of selected small-sample data, and the confidence interval and probability density function of the transmission efficiency are predicted. Finally, the reptile search algorithm is used to optimize the structure of the WPT system to improve efficiency.
基于自适应高斯过程回归的 EV-WPT 系统效率的不确定性量化和优化设计
无线电力传输(WPT)是一种安全、便捷、智能的电动汽车充电解决方案。针对由于线圈和电路元件加工以及实际驱动水平的差异,传输效率容易受到较大不确定性影响的问题,本研究提出使用自适应高斯过程回归(aGPR)对效率进行不确定性量化。利用一组选定的小样本数据构建了 WPT 系统效率 aGPR 代用模型,并预测了传输效率的置信区间和概率密度函数。最后,利用爬行动物搜索算法优化 WPT 系统结构,以提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信