Sewage Sludge Plasma Gasification: Characterization and Experimental Rig Design

Reactions Pub Date : 2024-04-16 DOI:10.3390/reactions5020014
Nuno Pacheco, André Ribeiro, Filinto Oliveira, Filipe Pereira, L. Marques, J. Teixeira, C. Vilarinho, Flávia V. Barbosa
{"title":"Sewage Sludge Plasma Gasification: Characterization and Experimental Rig Design","authors":"Nuno Pacheco, André Ribeiro, Filinto Oliveira, Filipe Pereira, L. Marques, J. Teixeira, C. Vilarinho, Flávia V. Barbosa","doi":"10.3390/reactions5020014","DOIUrl":null,"url":null,"abstract":"The treatment of wastewater worldwide generates substantial quantities of sewage sludge (SS), prompting concerns about its environmental impact. Various approaches have been explored for SS reuse, with energy production emerging as a viable solution. This study focuses on harnessing energy from domestic wastewater treatment (WWT) sewage sludge through plasma gasification. Effective syngas production hinges on precise equipment design which, in turn, depends on the detailed feedstock used for characterization. Key components of plasma gasification include the plasma torch, reactor, heat exchanger, scrubber, and cyclone, enabling the generation of inert slag for landfill disposal and to ensure clean syngas. Designing these components entails considerations of sludge composition, calorific power, thermal conductivity, ash diameter, and fusibility properties, among other parameters. Accordingly, this work entails the development of an experimental setup for the plasma gasification of sewage sludge, taking into account a comprehensive sludge characterization. The experimental findings reveal that domestic WWT sewage sludge with 40% humidity exhibits a low thermal conductivity of approximately 0.392 W/mK and a calorific value of LHV = 20.78 MJ/kg. Also, the relatively low ash content (17%) renders this raw material advantageous for plasma gasification processes. The integration of a detailed sludge characterization into the equipment design lays the foundation for efficient syngas production. This study aims to contribute to advancing sustainable waste-to-energy technologies, namely plasma gasification, by leveraging sewage sludge as a valuable resource for syngas production.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions5020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The treatment of wastewater worldwide generates substantial quantities of sewage sludge (SS), prompting concerns about its environmental impact. Various approaches have been explored for SS reuse, with energy production emerging as a viable solution. This study focuses on harnessing energy from domestic wastewater treatment (WWT) sewage sludge through plasma gasification. Effective syngas production hinges on precise equipment design which, in turn, depends on the detailed feedstock used for characterization. Key components of plasma gasification include the plasma torch, reactor, heat exchanger, scrubber, and cyclone, enabling the generation of inert slag for landfill disposal and to ensure clean syngas. Designing these components entails considerations of sludge composition, calorific power, thermal conductivity, ash diameter, and fusibility properties, among other parameters. Accordingly, this work entails the development of an experimental setup for the plasma gasification of sewage sludge, taking into account a comprehensive sludge characterization. The experimental findings reveal that domestic WWT sewage sludge with 40% humidity exhibits a low thermal conductivity of approximately 0.392 W/mK and a calorific value of LHV = 20.78 MJ/kg. Also, the relatively low ash content (17%) renders this raw material advantageous for plasma gasification processes. The integration of a detailed sludge characterization into the equipment design lays the foundation for efficient syngas production. This study aims to contribute to advancing sustainable waste-to-energy technologies, namely plasma gasification, by leveraging sewage sludge as a valuable resource for syngas production.
污水污泥等离子气化:特性分析与实验装置设计
世界各地在处理废水时都会产生大量的污水污泥(SS),这引起了人们对其环境影响的关注。人们探索了各种污水污泥再利用的方法,其中能源生产成为一种可行的解决方案。本研究的重点是通过等离子气化从生活污水处理(WWT)污泥中获取能源。有效的合成气生产取决于精确的设备设计,而设备设计又取决于用于表征的详细原料。等离子气化的关键部件包括等离子体火炬、反应器、热交换器、洗涤器和旋风分离器,以便产生惰性炉渣进行填埋处理,并确保产生清洁的合成气。在设计这些组件时,需要考虑污泥成分、热功率、热导率、灰直径和熔融性等参数。因此,这项工作需要开发一种用于污水污泥等离子气化的实验装置,同时考虑到污泥的综合特征。实验结果表明,湿度为 40% 的家用 WWT 污水污泥的导热系数较低,约为 0.392 W/mK,热值为 LHV = 20.78 MJ/kg。此外,相对较低的灰分含量(17%)使这种原料成为等离子气化工艺的有利原料。将详细的污泥特性分析纳入设备设计为高效生产合成气奠定了基础。本研究旨在利用污水污泥作为生产合成气的宝贵资源,推动可持续废物变能源技术(即等离子气化技术)的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信