{"title":"Intelligent decision-making for fertigation treatment of tomatoes cultivated in greenhouse: An experimental study","authors":"Yonglin Li, Yaqi Hu, Ziming Li, Wenyong Wu, Meng Ma, Aike Guo","doi":"10.1002/ird.2957","DOIUrl":null,"url":null,"abstract":"<p>To verify the effectiveness of the intelligent decision method for fertigation, an automatic control system for fertigation in greenhouses was designed, and three intelligent decision methods based on evapotranspiration (T1), soil moisture (T2) and accumulated temperature (T3) were tested. Intelligent decisions included monitoring meteorological information, automatically monitoring soil moisture, utilizing fertigation application systems and using automated control modules. The system was stable and accurately controlled according to the decision scheme. The results showed that the average errors of the automated control system for decision-making and irrigation were 1.1 and 0.8%, respectively. The study findings serve as a reference for the integration of intelligent irrigation decision-making and control systems and for further improving the efficiency of water and fertilizer utilized. Compared with those of the control, the three intelligent decision-making methods increased the tomato yield by 8, 12 and 7%, respectively. In addition, the irrigation water and fertilizer levels decreased significantly compared with those in the control treatment. Although the accuracy of the soil water content (SWC) estimated based on ET and temperature in irrigation decision-making is low, the general trend is consistent with practice. In addition, the irrigation water use efficiency (IWUE) and partial factor productivity of fertilizer (PFP) were significantly improved. Similarly, the IWUE in T1 was the highest (60 kg m⁻<sup>3</sup>), and the PFP in T3 was the highest (669 kg kg⁻¹).</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1246-1261"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2957","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
To verify the effectiveness of the intelligent decision method for fertigation, an automatic control system for fertigation in greenhouses was designed, and three intelligent decision methods based on evapotranspiration (T1), soil moisture (T2) and accumulated temperature (T3) were tested. Intelligent decisions included monitoring meteorological information, automatically monitoring soil moisture, utilizing fertigation application systems and using automated control modules. The system was stable and accurately controlled according to the decision scheme. The results showed that the average errors of the automated control system for decision-making and irrigation were 1.1 and 0.8%, respectively. The study findings serve as a reference for the integration of intelligent irrigation decision-making and control systems and for further improving the efficiency of water and fertilizer utilized. Compared with those of the control, the three intelligent decision-making methods increased the tomato yield by 8, 12 and 7%, respectively. In addition, the irrigation water and fertilizer levels decreased significantly compared with those in the control treatment. Although the accuracy of the soil water content (SWC) estimated based on ET and temperature in irrigation decision-making is low, the general trend is consistent with practice. In addition, the irrigation water use efficiency (IWUE) and partial factor productivity of fertilizer (PFP) were significantly improved. Similarly, the IWUE in T1 was the highest (60 kg m⁻3), and the PFP in T3 was the highest (669 kg kg⁻¹).
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.