Algebraic classification of 2+1 geometries: a new approach

M. Papajčı́k, J. Podolský
{"title":"Algebraic classification of 2+1 geometries: a new approach","authors":"M. Papajčı́k, J. Podolský","doi":"10.1088/1361-6382/ad3ffd","DOIUrl":null,"url":null,"abstract":"\n We present a convenient method of algebraic classification of 2+1 spacetimes into the types I, II, D, III, N and O, without using any field equations. It is based on the 2+1 analogue of the Newman-Penrose curvature scalars Psi_A of distinct boost weights, which are specific projections of the Cotton tensor onto a suitable null triad. The algebraic types are then simply determined by the gradual vanishing of such Cotton scalars, starting with those of the highest boost weight. This classification is directly related to the specific multiplicity of the Cotton-aligned null directions (CANDs) and to the corresponding Bel-Debever criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that our method is fully equivalent to the usual Petrov-type classification of 2+1 spacetimes based on the eigenvalue problem and determining the respective canonical Jordan form of the Cotton-York tensor. We also derive a simple synoptic algorithm of algebraic classification based on the key polynomial curvature invariants. To show the practical usefulness of our approach, we perform the classification of several explicit examples, namely the general class of Robinson-Trautman spacetimes with an aligned electromagnetic field and a cosmological constant, and other metrics of various algebraic types.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad3ffd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a convenient method of algebraic classification of 2+1 spacetimes into the types I, II, D, III, N and O, without using any field equations. It is based on the 2+1 analogue of the Newman-Penrose curvature scalars Psi_A of distinct boost weights, which are specific projections of the Cotton tensor onto a suitable null triad. The algebraic types are then simply determined by the gradual vanishing of such Cotton scalars, starting with those of the highest boost weight. This classification is directly related to the specific multiplicity of the Cotton-aligned null directions (CANDs) and to the corresponding Bel-Debever criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that our method is fully equivalent to the usual Petrov-type classification of 2+1 spacetimes based on the eigenvalue problem and determining the respective canonical Jordan form of the Cotton-York tensor. We also derive a simple synoptic algorithm of algebraic classification based on the key polynomial curvature invariants. To show the practical usefulness of our approach, we perform the classification of several explicit examples, namely the general class of Robinson-Trautman spacetimes with an aligned electromagnetic field and a cosmological constant, and other metrics of various algebraic types.
2+1 几何图形的代数分类:一种新方法
我们提出了一种将 2+1 空间划分为 I、II、D、III、N 和 O 类型的代数方法,无需使用任何场方程。该方法基于不同提升权重的纽曼-彭罗斯曲率标量 Psi_A 的 2+1 类比,它们是科顿张量在合适的空三元组上的特定投影。然后,代数类型就简单地由这些科顿张量的逐渐消失决定了,从提升权重最大的科顿张量开始。这种分类与棉花对齐空方向(CAND)的特定多重性和相应的贝尔-德贝弗标准直接相关。利用双向(即 2-形式)分解,我们证明了我们的方法完全等同于基于特征值问题和确定科顿-约克张量各自的典范约旦形式的 2+1 空间的通常彼得罗夫式分类。我们还根据关键的多项式曲率不变式推导出了代数分类的简单综合算法。为了证明我们的方法的实用性,我们对几个明确的例子进行了分类,即具有对齐电磁场和宇宙学常数的罗宾逊-特劳特曼时空的一般类别,以及其他各种代数类型的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信