{"title":"Weakly nonlinear models of stochastic wave propagation in two-layer hydrodynamic systems","authors":"O. Avramenko, V. Naradovyi","doi":"10.18523/2617-70806202339-44","DOIUrl":null,"url":null,"abstract":"The paper discusses three-dimensional models of the propagation of stochastic internal waves in hydrodynamic systems: ’half-space - half-space’, ’half-space - layer with rigid lid’, and ’layer with solid bottom - layer with rigid lid’. In constructing the models, the layers are considered to be ideal fluids separated by a contact surface. The main objective of the modeling is to obtain a dynamic equation for the stochastic amplitude of surface waves. A comparative analysis of the obtained results has been conducted. In order to control the contribution of nonlinear terms, a dimensionless non-numerical parameter has been introduced. The models are distinguished by boundary conditions that determine the general form of solutions. As a result, a dynamic equation for the stochastic amplitude of internal waves has been derived. After ensemble averaging of the amplitudes, the dynamic equation is formulated in integral form using Fourier-Stieltjes integrals. The dynamic equation reveals two-wave and three-wave interactions, as well as the contribution of dispersion to wave dynamics. An investigation of the boundary case of the transition of internal waves in the ’half-space - half-space’ system to surface waves in the absence of an upper liquid layer confirms the validity of the results.","PeriodicalId":404986,"journal":{"name":"Mohyla Mathematical Journal","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mohyla Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18523/2617-70806202339-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper discusses three-dimensional models of the propagation of stochastic internal waves in hydrodynamic systems: ’half-space - half-space’, ’half-space - layer with rigid lid’, and ’layer with solid bottom - layer with rigid lid’. In constructing the models, the layers are considered to be ideal fluids separated by a contact surface. The main objective of the modeling is to obtain a dynamic equation for the stochastic amplitude of surface waves. A comparative analysis of the obtained results has been conducted. In order to control the contribution of nonlinear terms, a dimensionless non-numerical parameter has been introduced. The models are distinguished by boundary conditions that determine the general form of solutions. As a result, a dynamic equation for the stochastic amplitude of internal waves has been derived. After ensemble averaging of the amplitudes, the dynamic equation is formulated in integral form using Fourier-Stieltjes integrals. The dynamic equation reveals two-wave and three-wave interactions, as well as the contribution of dispersion to wave dynamics. An investigation of the boundary case of the transition of internal waves in the ’half-space - half-space’ system to surface waves in the absence of an upper liquid layer confirms the validity of the results.