Dan Li, Zheng Qu, Chen Lyu, Luping Zhang, Wenjin Zuo
{"title":"Fuzzy SVM With Mahalanobis Distance for Situational Awareness-Based Recognition of Public Health Emergencies","authors":"Dan Li, Zheng Qu, Chen Lyu, Luping Zhang, Wenjin Zuo","doi":"10.4018/ijfsa.342117","DOIUrl":null,"url":null,"abstract":"In public health emergencies, situational awareness is crucial for swift responses by governments and rescue organizations. In this manuscript, a novel framework is proposed to identify and classify event-specific information, aiming to comprehend concepts, characteristics, and classifications associated with situational awareness in social media emergencies. First, a statistical approach is employed to extract a set of standard features. Second, a category-based latent dirichlet allocation to vector (LDA2vec) model is leveraged to extract topic-based features to enhance accuracy, particularly for unbalanced datasets. Finally, a fuzzy support vector machine (FSVM) classifier utilizing the Mahalanobis distance kernel is introduced to improve the detection accuracy of event-specific information. The framework's effectiveness is evaluated using the social media public health dataset, achieving superior filtering capabilities for non-informative data with a precision of 89% and an F1-Score of 91%, surpassing other standard methods.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.342117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
In public health emergencies, situational awareness is crucial for swift responses by governments and rescue organizations. In this manuscript, a novel framework is proposed to identify and classify event-specific information, aiming to comprehend concepts, characteristics, and classifications associated with situational awareness in social media emergencies. First, a statistical approach is employed to extract a set of standard features. Second, a category-based latent dirichlet allocation to vector (LDA2vec) model is leveraged to extract topic-based features to enhance accuracy, particularly for unbalanced datasets. Finally, a fuzzy support vector machine (FSVM) classifier utilizing the Mahalanobis distance kernel is introduced to improve the detection accuracy of event-specific information. The framework's effectiveness is evaluated using the social media public health dataset, achieving superior filtering capabilities for non-informative data with a precision of 89% and an F1-Score of 91%, surpassing other standard methods.