Marcelo José da Silva, Magna Soelma Beserra de Moura, Herica Fernanda de Sousa Carvalho, Cloves Vilas Boas dos Santos, Mário de Miranda Villas Boas Ramos Leitão, Luis Fernando de Souza Magno Campeche, Thieres George Freire da Silva
{"title":"Evapotranspiration and crop coefficient of ‘Kent’ mango in an important fruit-growing hub in Brazil","authors":"Marcelo José da Silva, Magna Soelma Beserra de Moura, Herica Fernanda de Sousa Carvalho, Cloves Vilas Boas dos Santos, Mário de Miranda Villas Boas Ramos Leitão, Luis Fernando de Souza Magno Campeche, Thieres George Freire da Silva","doi":"10.1002/ird.2962","DOIUrl":null,"url":null,"abstract":"<p>The ‘Kent’ mango is one of the main cultivars produced in the São Francisco valley. However, due to a lack of data, water management was carried out using coefficients from the Tommy Atkins cultivar. Thus, aiming to achieve greater water management efficiency, the aim of this study was to evaluate the growth, radiation and energy balance, evapotranspiration and coefficients of the ‘Kent’ mango in the lower-middle São Francisco valley in Brazil. The study was conducted in an orchard over two harvests between 2017 and 2018. The radiation and energy balance, evapotranspiration (ET<sub>c</sub>) and crop coefficients (<i>K</i><sub>c</sub>) of the mango were estimated from micrometeorological data. The mean reference evapotranspiration (ET<sub>0</sub>) and ET<sub>c</sub> values were 5.47 and 4.40 mm day<sup>−1</sup> (vegetative growth, VG), 4.42 and 4.29 mm day<sup>−1</sup> (floral induction, FI), 4.08 and 3.48 mm day<sup>−1</sup> (floral induction + flowering, FI + FL), 4.51 and 3.63 mm day<sup>−1</sup> (fruit drop, FD) and 6.09 and 4.46 mm day<sup>−1</sup> (formation fruit + maturation fruit phase, FF + MF). Under the climate conditions of the São Francisco valley, <i>K</i><sub>c</sub> values of 0.80, 0.97, 0.85, 0.80 and 0.74 are recommended for the ‘Kent’ mango during the VG, FI, FI + FL, FD and FF + MF phases, respectively.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1391-1407"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2962","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The ‘Kent’ mango is one of the main cultivars produced in the São Francisco valley. However, due to a lack of data, water management was carried out using coefficients from the Tommy Atkins cultivar. Thus, aiming to achieve greater water management efficiency, the aim of this study was to evaluate the growth, radiation and energy balance, evapotranspiration and coefficients of the ‘Kent’ mango in the lower-middle São Francisco valley in Brazil. The study was conducted in an orchard over two harvests between 2017 and 2018. The radiation and energy balance, evapotranspiration (ETc) and crop coefficients (Kc) of the mango were estimated from micrometeorological data. The mean reference evapotranspiration (ET0) and ETc values were 5.47 and 4.40 mm day−1 (vegetative growth, VG), 4.42 and 4.29 mm day−1 (floral induction, FI), 4.08 and 3.48 mm day−1 (floral induction + flowering, FI + FL), 4.51 and 3.63 mm day−1 (fruit drop, FD) and 6.09 and 4.46 mm day−1 (formation fruit + maturation fruit phase, FF + MF). Under the climate conditions of the São Francisco valley, Kc values of 0.80, 0.97, 0.85, 0.80 and 0.74 are recommended for the ‘Kent’ mango during the VG, FI, FI + FL, FD and FF + MF phases, respectively.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.