Stability analysis of uncertain simple pendulum equation

Xiaoyue Qiu, Liying Liu
{"title":"Stability analysis of uncertain simple pendulum equation","authors":"Xiaoyue Qiu, Liying Liu","doi":"10.1088/1751-8121/ad4076","DOIUrl":null,"url":null,"abstract":"\n The law of motion of a simple pendulum system is described by an uncertain simple pendulum equation which is a second-order uncertain differential equation driven by Liu process. The stability of a simple pendulum system refers to whether the system tends to the equilibrium state under small perturbation. In order to discuss the sensitivity of the uncertain simple pendulum equation to the perturbation in the initial state, we give the concept of many kinds of stability of the uncertain simple pendulum equation, including almost deterministic stability, distributional stability and exponential stability. And, the sufficient conditions of almost deterministic stability, distributional stability and exponential stability of the uncertain simple pendulum equation are proved respectively.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":" 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The law of motion of a simple pendulum system is described by an uncertain simple pendulum equation which is a second-order uncertain differential equation driven by Liu process. The stability of a simple pendulum system refers to whether the system tends to the equilibrium state under small perturbation. In order to discuss the sensitivity of the uncertain simple pendulum equation to the perturbation in the initial state, we give the concept of many kinds of stability of the uncertain simple pendulum equation, including almost deterministic stability, distributional stability and exponential stability. And, the sufficient conditions of almost deterministic stability, distributional stability and exponential stability of the uncertain simple pendulum equation are proved respectively.
不确定简摆方程的稳定性分析
简摆系统的运动规律由不确定简摆方程描述,该方程是由刘过程驱动的二阶不确定微分方程。简摆系统的稳定性是指系统在小扰动下是否趋于平衡状态。为了讨论不确定简摆方程对初始状态扰动的敏感性,我们给出了不确定简摆方程的多种稳定性概念,包括几乎确定性稳定性、分布稳定性和指数稳定性。并分别证明了不确定单摆方程的几乎确定稳定性、分布稳定性和指数稳定性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信