Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique

Nafisa Tabassum, Effat Jahan, Niloy Goswami, Md. Saniat Rahman Zishan
{"title":"Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique","authors":"Nafisa Tabassum, Effat Jahan, Niloy Goswami, Md. Saniat Rahman Zishan","doi":"10.53799/ajse.v23i1.967","DOIUrl":null,"url":null,"abstract":"The primary focus of this paper is to assess an interconnected power system using different optimization techniques. The main purpose is to employ different optimization techniques, including genetic algorithms (GA) and particle swarm optimization (PSO), to systematically enhance the performance of a multi-area or two-area automatic generation control (AGC) system, aiming to optimize the three PID controllers gain values and improve system performance under diverse loading conditions. Two case studies are conducted exploring different loading conditions in the megawatt (MW) range, including increasing load demand and decreasing load demand. The analysis involves four scenarios, covering without any kind of controller, another with solely a proportional integral derivative (PID) controller, a PID controller enhanced through a genetic algorithm (GA), and lastly, a PID controller improved through particle swarm optimization (PSO). The optimization process utilizes the integral time absolute error (ITAE) as the objective function to evaluate the system's performance. The simulation outcomes for ITAE, settling time, overshoot, and undershoot for frequency deviation of area one, area two, and power deviation in the tie-line are compared with previous similar studies to assess the novelty of this work. The article highlights the importance of the multi-area AGC system and the significance of different optimization techniques in improving its performance.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v23i1.967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary focus of this paper is to assess an interconnected power system using different optimization techniques. The main purpose is to employ different optimization techniques, including genetic algorithms (GA) and particle swarm optimization (PSO), to systematically enhance the performance of a multi-area or two-area automatic generation control (AGC) system, aiming to optimize the three PID controllers gain values and improve system performance under diverse loading conditions. Two case studies are conducted exploring different loading conditions in the megawatt (MW) range, including increasing load demand and decreasing load demand. The analysis involves four scenarios, covering without any kind of controller, another with solely a proportional integral derivative (PID) controller, a PID controller enhanced through a genetic algorithm (GA), and lastly, a PID controller improved through particle swarm optimization (PSO). The optimization process utilizes the integral time absolute error (ITAE) as the objective function to evaluate the system's performance. The simulation outcomes for ITAE, settling time, overshoot, and undershoot for frequency deviation of area one, area two, and power deviation in the tie-line are compared with previous similar studies to assess the novelty of this work. The article highlights the importance of the multi-area AGC system and the significance of different optimization techniques in improving its performance.
使用遗传算法和粒子群优化技术的多区域互联系统自动发电控制性能分析
本文的主要重点是利用不同的优化技术对互联电力系统进行评估。主要目的是采用不同的优化技术,包括遗传算法 (GA) 和粒子群优化 (PSO),系统地提高多区域或双区域自动发电控制 (AGC) 系统的性能,旨在优化三个 PID 控制器的增益值,改善不同负载条件下的系统性能。我们进行了两项案例研究,探讨了兆瓦(MW)范围内的不同负载条件,包括负载需求增加和负载需求减少。分析涉及四种情况,包括不使用任何控制器的情况、仅使用比例积分导数(PID)控制器的情况、通过遗传算法(GA)增强 PID 控制器的情况,以及最后通过粒子群优化(PSO)改进 PID 控制器的情况。优化过程利用积分时间绝对误差(ITAE)作为目标函数来评估系统性能。针对一区、二区频率偏差和连接线功率偏差的积分时间绝对误差 (ITAE)、稳定时间、过冲和下冲的模拟结果与之前的类似研究进行了比较,以评估这项工作的新颖性。文章强调了多区域 AGC 系统的重要性,以及不同优化技术对提高其性能的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信