Optimization of data analysis models for low-resource Eurasian languages using machine translation

IF 0.9 Q4 TELECOMMUNICATIONS
HongYan Chen, Kim Kyung Yee
{"title":"Optimization of data analysis models for low-resource Eurasian languages using machine translation","authors":"HongYan Chen,&nbsp;Kim Kyung Yee","doi":"10.1002/itl2.528","DOIUrl":null,"url":null,"abstract":"<p>This study explores low-resource language data translation models in the realms of multimedia teaching and cyber security. A rapid learning-based neural machine translation (NMT) method is developed based on meta-learning theory. Subsequently, the back translation method is employed to further improve the NMT model for low-resource language data. Results indicate that the proposed low-resource language NMT method based on meta-learning achieves increased Bilingual Evaluation Understudy (BLEU) scores for three target tasks in a supervised environment. This study emphasizes the auxiliary role of meta-learning theory in low-resource language data translation, aiming to enhance the efficiency of translation models in utilizing information from low-resource languages.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores low-resource language data translation models in the realms of multimedia teaching and cyber security. A rapid learning-based neural machine translation (NMT) method is developed based on meta-learning theory. Subsequently, the back translation method is employed to further improve the NMT model for low-resource language data. Results indicate that the proposed low-resource language NMT method based on meta-learning achieves increased Bilingual Evaluation Understudy (BLEU) scores for three target tasks in a supervised environment. This study emphasizes the auxiliary role of meta-learning theory in low-resource language data translation, aiming to enhance the efficiency of translation models in utilizing information from low-resource languages.

利用机器翻译优化低资源欧亚语言的数据分析模型
本研究探讨了多媒体教学和网络安全领域的低资源语言数据翻译模型。研究基于元学习理论,开发了一种基于快速学习的神经机器翻译(NMT)方法。随后,采用反向翻译方法进一步改进了低资源语言数据的神经机器翻译模型。结果表明,所提出的基于元学习的低资源语言 NMT 方法在有监督的环境中提高了三个目标任务的双语评估(BLEU)分数。本研究强调了元学习理论在低资源语言数据翻译中的辅助作用,旨在提高翻译模型利用低资源语言信息的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信