On Goethals and Seidel Array

P. K. Manjhi, Ninian Nauneet Kujur
{"title":"On Goethals and Seidel Array","authors":"P. K. Manjhi, Ninian Nauneet Kujur","doi":"10.17485/ijst/v17i16.2937","DOIUrl":null,"url":null,"abstract":"Objectives: In this article, we aim to find a series of Hadamard matrices by suitable selection of the special class of matrices given in the Goethals and Seidel array and study the pattern obtained. Methods: In the presented work, the search technique of Hadamard matrices has been done by selecting special class of (0,1) negacyclic matrices instead of the back diagonal identity matrix given in Geothals and Seidel arrays and the possible existence of negacyclic matrices for the corresponding four matrices have been explored in each case. Findings: Corresponding to the special class of (0,1) negacyclic matrices, no sets of four negacyclic matrices have been obtained in the Goethal Seidel array, for even orders. For odd orders, except in the case when all four matrices are equal and the case when there is a pair of equal matrices, many outputs have been obtained for the remaining cases, the search domain being upto 11,9 and 7 for the case of two different, three different and four different matrices respectively, in the Goethal Seidel array. Novelty: The selection of special class of negacyclic matrices instead of the back diagonal identity matrix and finding the corresponding four negacyclic matrices in Goethals and Seidel arrays for constructing Hadamard matrices provides a new approach to the construction of Hadamard matrices. Keywords: Hadamard matrix, Circulant matrix, Williamson matrices, Orthogonal array, Goethals and Seidel array","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":" 70","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i16.2937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In this article, we aim to find a series of Hadamard matrices by suitable selection of the special class of matrices given in the Goethals and Seidel array and study the pattern obtained. Methods: In the presented work, the search technique of Hadamard matrices has been done by selecting special class of (0,1) negacyclic matrices instead of the back diagonal identity matrix given in Geothals and Seidel arrays and the possible existence of negacyclic matrices for the corresponding four matrices have been explored in each case. Findings: Corresponding to the special class of (0,1) negacyclic matrices, no sets of four negacyclic matrices have been obtained in the Goethal Seidel array, for even orders. For odd orders, except in the case when all four matrices are equal and the case when there is a pair of equal matrices, many outputs have been obtained for the remaining cases, the search domain being upto 11,9 and 7 for the case of two different, three different and four different matrices respectively, in the Goethal Seidel array. Novelty: The selection of special class of negacyclic matrices instead of the back diagonal identity matrix and finding the corresponding four negacyclic matrices in Goethals and Seidel arrays for constructing Hadamard matrices provides a new approach to the construction of Hadamard matrices. Keywords: Hadamard matrix, Circulant matrix, Williamson matrices, Orthogonal array, Goethals and Seidel array
关于 Goethals 和 Seidel 阵列
目的:本文旨在通过对 Goethals 和 Seidel 阵列中给出的特殊类矩阵进行适当选择,找到一系列 Hadamard 矩阵,并研究得到的模式。方法在本文中,通过选择特殊类别的(0,1)负环矩阵来代替 Geothals 和 Seidel 阵列中给出的后对角线同矩阵,完成了哈达玛矩阵的搜索技术,并在每种情况下探索了相应四个矩阵可能存在的负环矩阵。研究结果与 (0,1) 负环矩阵这一特殊类别相对应,对于偶数阶,在 Goethal Seidel 阵列中没有得到四组负环矩阵。对于奇数阶,除了四个矩阵都相等和有一对相等矩阵的情况外,其余情况都得到了许多输出,在 Goethal Seidel 阵列中,对于两个不同矩阵、三个不同矩阵和四个不同矩阵的情况,搜索域分别高达 11、9 和 7。新颖性:选择特殊类别的负环矩阵代替后对角线同矩阵,并在 Goethals 阵列和 Seidel 阵列中找到相应的四个负环矩阵来构造哈达玛矩阵,为哈达玛矩阵的构造提供了一种新方法。关键词哈达玛矩阵、圆周矩阵、威廉姆森矩阵、正交阵列、戈塔尔和塞德尔阵列
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信