Resume Screening using Machine Learning

Dr. Sandeep Tayal, Taniya Sharma, Shivansh Singhal, Anurag Thakur
{"title":"Resume Screening using Machine Learning","authors":"Dr. Sandeep Tayal, Taniya Sharma, Shivansh Singhal, Anurag Thakur","doi":"10.32628/cseit2410275","DOIUrl":null,"url":null,"abstract":"This study explores the utilization of Machine Learning (ML) and Natural Language Processing (NLP) in automating the resume screening process. Traditional methods, often manual and subjective, fail to efficiently manage the volume and variety of resumes. By employing NLP techniques like named entity recognition and part-of-speech tagging, coupled with ML classifiers such as K-Nearest Neighbors and Support Vector Machines, we propose a system that enhances the precision of candidate selection while significantly reducing time and effort.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2410275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the utilization of Machine Learning (ML) and Natural Language Processing (NLP) in automating the resume screening process. Traditional methods, often manual and subjective, fail to efficiently manage the volume and variety of resumes. By employing NLP techniques like named entity recognition and part-of-speech tagging, coupled with ML classifiers such as K-Nearest Neighbors and Support Vector Machines, we propose a system that enhances the precision of candidate selection while significantly reducing time and effort.
使用机器学习筛选简历
本研究探讨了如何利用机器学习(ML)和自然语言处理(NLP)实现简历筛选流程的自动化。传统的方法通常是手动和主观的,无法有效管理数量庞大、种类繁多的简历。通过采用命名实体识别和语音部分标记等 NLP 技术以及 K-Nearest Neighbors 和支持向量机等机器学习分类器,我们提出了一种系统,它可以提高候选人筛选的精确度,同时显著减少时间和精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信