Mathematical Simulation for MHD Casson Convective Nanofluid Flow Induced by 3D Permeable Sheet with Chemical Effect

Kh.L. Dang, Vinit Makkar, Naresh Sharma
{"title":"Mathematical Simulation for MHD Casson Convective Nanofluid Flow Induced by 3D Permeable Sheet with Chemical Effect","authors":"Kh.L. Dang, Vinit Makkar, Naresh Sharma","doi":"10.17485/ijst/v17i16.117","DOIUrl":null,"url":null,"abstract":"Objectives: Current manuscript focuses on examination of chemical reaction and heat generation impacts on 3D MHD non-Newtonian nanofluid flow with convective boundary conditions induced by permeable sheet. Additionally, Brownian motion, non-Newtonian heating and thermophoretic processes as used for this study. Methods: A computational programme, MATLAB has been used for solving the system of O.D.Es with the help of ODE45 solver. The Runge Kutta Fehlberg approach is implemented to calculate the answer to the expression for temperature, velocity, and nanoparticle concentration after the shooting process. Findings: For a variety of fluid parameters, the temperature, concentration of nanoparticles, and dimensionless velocities are shown and examined, including permeability parameter , magnetic , stretching ratio parameter , Lewis number , Brownian motion and Prandtl number , thermal Biot number , Casson fluid parameter , chemical reaction parameter . The temperature is found to increase with an enhance in the thermal Biot number and to reduce with a greater Prandtl number and stretching ratio parameter. Novelty: Although the immense significance and frequent use of nanofluids in industries and technology, no effort has been made to explore the chemical influence on MHD Casson fluid flow using a three-dimensional permeable sheet. Through similarity transformations, the Runge-Kutta Fehlberg technique converts mass, momentum, and energy conservation equations into ODEs and incorporates boundary conditions. Skin friction and the heat transmission rate past an extending surface, which have an impact on technology and production, can be predicted using the results of this study. Keywords: Chemical reaction, Buongiorno's model, Nanofluid, Biot numbers, 3D permeable sheet","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":" 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i16.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Current manuscript focuses on examination of chemical reaction and heat generation impacts on 3D MHD non-Newtonian nanofluid flow with convective boundary conditions induced by permeable sheet. Additionally, Brownian motion, non-Newtonian heating and thermophoretic processes as used for this study. Methods: A computational programme, MATLAB has been used for solving the system of O.D.Es with the help of ODE45 solver. The Runge Kutta Fehlberg approach is implemented to calculate the answer to the expression for temperature, velocity, and nanoparticle concentration after the shooting process. Findings: For a variety of fluid parameters, the temperature, concentration of nanoparticles, and dimensionless velocities are shown and examined, including permeability parameter , magnetic , stretching ratio parameter , Lewis number , Brownian motion and Prandtl number , thermal Biot number , Casson fluid parameter , chemical reaction parameter . The temperature is found to increase with an enhance in the thermal Biot number and to reduce with a greater Prandtl number and stretching ratio parameter. Novelty: Although the immense significance and frequent use of nanofluids in industries and technology, no effort has been made to explore the chemical influence on MHD Casson fluid flow using a three-dimensional permeable sheet. Through similarity transformations, the Runge-Kutta Fehlberg technique converts mass, momentum, and energy conservation equations into ODEs and incorporates boundary conditions. Skin friction and the heat transmission rate past an extending surface, which have an impact on technology and production, can be predicted using the results of this study. Keywords: Chemical reaction, Buongiorno's model, Nanofluid, Biot numbers, 3D permeable sheet
具有化学效应的三维渗透片诱导的 MHD 卡森对流纳米流体流动的数学模拟
研究目的本稿件主要研究化学反应和发热对三维 MHD 非牛顿纳米流体流动的影响,其对流边界条件由透水板诱导。此外,本研究还使用了布朗运动、非牛顿加热和热泳过程。研究方法在 ODE45 求解器的帮助下,使用 MATLAB 计算程序求解 O.D.Es 系统。采用 Runge Kutta Fehlberg 方法计算射流过程后的温度、速度和纳米粒子浓度表达式的答案。研究结果对于各种流体参数,显示并研究了温度、纳米粒子浓度和无量纲速度,包括渗透参数、磁性、拉伸比参数、刘易斯数、布朗运动和普朗特数、热毕奥特数、卡森流体参数、化学反应参数。研究发现,随着热比奥特数的增大,温度会升高,而随着普朗特数和拉伸比参数的增大,温度会降低。新颖性:尽管纳米流体在工业和技术领域意义重大且应用频繁,但目前还没有人利用三维渗透片探索化学反应对 MHD 卡松流体流动的影响。通过相似变换,Runge-Kutta Fehlberg 技术将质量、动量和能量守恒方程转换为 ODE,并纳入边界条件。利用这项研究的结果,可以预测对技术和生产有影响的皮肤摩擦和经过延伸表面的热传导率。关键词化学反应、布昂奥诺模型、纳米流体、毕奥特数、三维可渗透片材
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信