Improving Cardiovascular Disease Prediction through Comparative Analysis of Machine Learning Models

Nishat Anjum, Cynthia Ummay Siddiqua, Mahfuz Haider, Zannatun Ferdus, Md Azad Hossain Raju, Touhid Imam, Md Rezwanur Rahman
{"title":"Improving Cardiovascular Disease Prediction through Comparative Analysis of Machine Learning Models","authors":"Nishat Anjum, Cynthia Ummay Siddiqua, Mahfuz Haider, Zannatun Ferdus, Md Azad Hossain Raju, Touhid Imam, Md Rezwanur Rahman","doi":"10.32996/jcsts.2024.6.2.7","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases, including myocardial infarction, present significant challenges in modern healthcare, necessitating accurate prediction models for early intervention. This study explores the efficacy of machine learning algorithms in predicting myocardial infarction, leveraging a dataset comprising various clinical attributes sourced from patients with heart failure. Six machine learning models, including Logistic Regression, Support Vector Machine, XGBoost, LightGBM, Decision Tree, and Bagging, are evaluated based on key performance metrics such as accuracy, precision, recall, F1 Score, and AUC. The results reveal XGBoost as the top performer, achieving an accuracy of 94.80% and an AUC of 90.0%. LightGBM closely follows with an accuracy of 92.50% and an AUC of 92.00%. Logistic Regression emerges as a reliable option with an accuracy of 85.0%. The study underscores the potential of machine learning in enhancing myocardial infarction prediction, offering valuable insights for clinical decision-making and healthcare intervention strategies.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"113 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cardiovascular diseases, including myocardial infarction, present significant challenges in modern healthcare, necessitating accurate prediction models for early intervention. This study explores the efficacy of machine learning algorithms in predicting myocardial infarction, leveraging a dataset comprising various clinical attributes sourced from patients with heart failure. Six machine learning models, including Logistic Regression, Support Vector Machine, XGBoost, LightGBM, Decision Tree, and Bagging, are evaluated based on key performance metrics such as accuracy, precision, recall, F1 Score, and AUC. The results reveal XGBoost as the top performer, achieving an accuracy of 94.80% and an AUC of 90.0%. LightGBM closely follows with an accuracy of 92.50% and an AUC of 92.00%. Logistic Regression emerges as a reliable option with an accuracy of 85.0%. The study underscores the potential of machine learning in enhancing myocardial infarction prediction, offering valuable insights for clinical decision-making and healthcare intervention strategies.
通过比较分析机器学习模型改进心血管疾病预测
包括心肌梗塞在内的心血管疾病给现代医疗保健带来了巨大挑战,需要精确的预测模型来进行早期干预。本研究利用心力衰竭患者的各种临床属性数据集,探索机器学习算法在预测心肌梗死方面的功效。根据准确率、精确度、召回率、F1 分数和 AUC 等关键性能指标,评估了六种机器学习模型,包括逻辑回归、支持向量机、XGBoost、LightGBM、决策树和 Bagging。结果表明,XGBoost 表现最佳,准确率达到 94.80%,AUC 达到 90.0%。LightGBM 紧随其后,准确率为 92.50%,AUC 为 92.00%。逻辑回归是一种可靠的选择,准确率为 85.0%。这项研究强调了机器学习在增强心肌梗塞预测方面的潜力,为临床决策和医疗干预策略提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信