Quantification of Irgafos P-168 and Degradative Profile in Samples of a Polypropylene/Polyethylene Composite Using Microwave, Ultrasound and Soxhlet Extraction Techniques

J. Hernández‐Fernández, Jaime Pérez-Mendoza, Rodrigo Ortega-Toro
{"title":"Quantification of Irgafos P-168 and Degradative Profile in Samples of a Polypropylene/Polyethylene Composite Using Microwave, Ultrasound and Soxhlet Extraction Techniques","authors":"J. Hernández‐Fernández, Jaime Pérez-Mendoza, Rodrigo Ortega-Toro","doi":"10.3390/jcs8040156","DOIUrl":null,"url":null,"abstract":"In polypropylene/polyethylene composite (C-PP/PE) production, stabilizing additives such as Irgafos P-168 are essential as antioxidant agents. In this study, an investigation was carried out that covers different solid–liquid extraction methods (Soxhlet, ultrasound, and microwaves); various variables were evaluated, such as temperature, extraction time, the choice of solvents, and the type of C-PP/PE used, and the gas chromatography coupled to mass spectrometry (GC-MS) technique was used to quantify the presence of Irgafos P-168 in the C-PP/PE samples. The results revealed that microwave extraction was the most effective in recovering Irgafos P-168. A recovery of 96.7% was achieved when using dichloromethane as a solvent, and 92.83% was achieved when using limonene as a solvent. The ultrasound technique recovered 91.74% using dichloromethane and 89.71% using limonene. The Soxhlet extraction method showed the lowest recovery percentages of 57.39% using dichloromethane as a solvent and 55.76% with limonene, especially when the C-PP/PE was in the form of pellets. The degradation products that obtained the highest degradation percentages were Bis (di-test-butyl phenyl) phosphate and Mono (di-test-butyl phenyl) phosphate using the microwave method with dichloromethane as a solvent and PP in film. Finally, the possible mechanisms for forming the degradation compounds of Irgafos P-168 were postulated.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"104 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In polypropylene/polyethylene composite (C-PP/PE) production, stabilizing additives such as Irgafos P-168 are essential as antioxidant agents. In this study, an investigation was carried out that covers different solid–liquid extraction methods (Soxhlet, ultrasound, and microwaves); various variables were evaluated, such as temperature, extraction time, the choice of solvents, and the type of C-PP/PE used, and the gas chromatography coupled to mass spectrometry (GC-MS) technique was used to quantify the presence of Irgafos P-168 in the C-PP/PE samples. The results revealed that microwave extraction was the most effective in recovering Irgafos P-168. A recovery of 96.7% was achieved when using dichloromethane as a solvent, and 92.83% was achieved when using limonene as a solvent. The ultrasound technique recovered 91.74% using dichloromethane and 89.71% using limonene. The Soxhlet extraction method showed the lowest recovery percentages of 57.39% using dichloromethane as a solvent and 55.76% with limonene, especially when the C-PP/PE was in the form of pellets. The degradation products that obtained the highest degradation percentages were Bis (di-test-butyl phenyl) phosphate and Mono (di-test-butyl phenyl) phosphate using the microwave method with dichloromethane as a solvent and PP in film. Finally, the possible mechanisms for forming the degradation compounds of Irgafos P-168 were postulated.
利用微波、超声波和索氏提取技术定量聚丙烯/聚乙烯复合材料样品中的伊尔加福斯 P-168 和降解曲线
在聚丙烯/聚乙烯复合材料(C-PP/PE)生产中,Irgafos P-168 等稳定添加剂作为抗氧化剂是必不可少的。本研究对不同的固液萃取方法(索氏提取法、超声波提取法和微波提取法)进行了调查;对温度、萃取时间、溶剂的选择和使用的 C-PP/PE 类型等各种变量进行了评估,并使用气相色谱-质谱联用(GC-MS)技术对 C-PP/PE 样品中的伊尔加福斯 P-168 进行了定量。结果表明,微波萃取是回收伊尔加福斯 P-168 的最有效方法。以二氯甲烷为溶剂的回收率为 96.7%,以柠檬烯为溶剂的回收率为 92.83%。超声波技术使用二氯甲烷的回收率为 91.74%,使用柠檬烯的回收率为 89.71%。索氏提取法的回收率最低,以二氯甲烷为溶剂时为 57.39%,以柠檬烯为溶剂时为 55.76%,尤其是当 C-PP/PE 为颗粒状时。在以二氯甲烷为溶剂、聚丙烯为薄膜的微波法中,降解率最高的降解产物是磷酸二(二试丁基苯基)酯和磷酸单(二试丁基苯基)酯。最后,对 Irgafos P-168 降解化合物的可能形成机制进行了推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信