Variation and λ-jump inequalities on Hp spaces

S. Demir
{"title":"Variation and λ-jump inequalities on Hp spaces","authors":"S. Demir","doi":"10.26907/0021-3446-2024-4-15-19","DOIUrl":null,"url":null,"abstract":"Let \\phi \\in S with \\int \\phi (x) dx = 1, and define \\phi t(x) = 1 tn \\phi \\Bigl( x t \\Bigr) , and denote the function family \\{ \\phi t\\ast f(x)\\} t>0 by \\Phi \\ast f(x). Let \\scrJ be a subset of \\BbbR (or more generally an ordered index set), and suppose that there exists a constant C1 such that \\sum t\\in \\scrJ | \\^\\phi t(x)| 2 < C1 for all x \\in \\BbbR n. Then i) There exists a constant C2 > 0 such that \\| V2(\\Phi \\ast f)\\| Lp \\leq C2\\| f\\| Hp, n n + 1 < p \\leq 1 for all f \\in Hp(\\BbbR n), n n + 1 < p \\leq 1. ii) The \\lambda -jump operator N\\lambda (\\Phi \\ast f) satisfies \\| \\lambda [N\\lambda (\\Phi \\ast f)]1/2\\| Lp \\leq C3\\| f\\| Hp, n n + 1 < p \\leq 1, uniformly in \\lambda > 0 for some constant C3 > 0.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"92 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2024-4-15-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \phi \in S with \int \phi (x) dx = 1, and define \phi t(x) = 1 tn \phi \Bigl( x t \Bigr) , and denote the function family \{ \phi t\ast f(x)\} t>0 by \Phi \ast f(x). Let \scrJ be a subset of \BbbR (or more generally an ordered index set), and suppose that there exists a constant C1 such that \sum t\in \scrJ | \^\phi t(x)| 2 < C1 for all x \in \BbbR n. Then i) There exists a constant C2 > 0 such that \| V2(\Phi \ast f)\| Lp \leq C2\| f\| Hp, n n + 1 < p \leq 1 for all f \in Hp(\BbbR n), n n + 1 < p \leq 1. ii) The \lambda -jump operator N\lambda (\Phi \ast f) satisfies \| \lambda [N\lambda (\Phi \ast f)]1/2\| Lp \leq C3\| f\| Hp, n n + 1 < p \leq 1, uniformly in \lambda > 0 for some constant C3 > 0.
Hp 空间上的变式和λ-跳跃不等式
让 \phi \in S with \int \phi (x) dx = 1,定义 \phi t(x) = 1 tn \phi \Bigl( x t \Bigr) ,并用 \Phi \ast f(x) 表示函数族 \{ \phi t\ast f(x)\} t>0.让 \scrJ 是 \BbbR 的一个子集(或者更一般地说是一个有序索引集),假设存在一个常数 C1,使得 \sum t\in \scrJ | \^\phi t(x)| 2 < C1 for all x \in \BbbR n。Then i) Thereists a constant C2 > 0 such that \| V2(\Phi \ast f)\| Lp \leq C2\| f\| Hp, n n + 1 < p \leq 1 for all f\in Hp(\BbbR n), n n + 1 < p \leq 1.ii) The \lambda -jump operator N\lambda (\Phi \ast f) satisfies \| \lambda [N\lambda (\Phi \ast f)]1/2\| Lp \leq C3\| f\| Hp, n n + 1 < p \leq 1, uniformly in \lambda > 0 for some constant C3 > 0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信