Kittinat Taweesintananon, R. A. Rørstadbotnen, Martin Landrø, Ståle E. Johansen, B. Arntsen, Matthias Forwick, Alfred Hanssen
{"title":"Near-surface characterization using shear-wave resonances: A case study from offshore Svalbard, Norway","authors":"Kittinat Taweesintananon, R. A. Rørstadbotnen, Martin Landrø, Ståle E. Johansen, B. Arntsen, Matthias Forwick, Alfred Hanssen","doi":"10.1190/geo2023-0530.1","DOIUrl":null,"url":null,"abstract":"Shear-wave (S-wave) resonances are typically observed when the surficial marine sediments over a rock substrate have relatively low S-wave velocities. We observe these phenomena using ocean-bottom fiber-optic distributed acoustic sensing (DAS) in two subsea fiber-optic telecommunication cables in Svalbard, Norway. Strong seismic energy from sufficiently large earthquakes is required to trigger and enhance the multiple order modes of S-wave resonances. Here, we use the interpreted S-wave resonance frequencies of the first two modes to determine the thickness and the S-wave velocity of the near-surface low-velocity layer (LVL) beneath the seafloor. Additionally, we use existing active P-wave seismic reflection data to determine the LVL thickness and to help build a more accurate S-wave velocity model from the S-wave resonance frequencies. The estimated S-wave velocity varies laterally within the LVL formation. Here, we find that the sediments or deposits with high S-wave velocity presented in the estimated LVL model agree with the distribution of some glacigenic sediments and landforms deposited in the survey area. Therefore, S-wave resonances measured by ocean-bottom DAS can be used to characterize the corresponding near-surface LVLs.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":"100 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0530.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shear-wave (S-wave) resonances are typically observed when the surficial marine sediments over a rock substrate have relatively low S-wave velocities. We observe these phenomena using ocean-bottom fiber-optic distributed acoustic sensing (DAS) in two subsea fiber-optic telecommunication cables in Svalbard, Norway. Strong seismic energy from sufficiently large earthquakes is required to trigger and enhance the multiple order modes of S-wave resonances. Here, we use the interpreted S-wave resonance frequencies of the first two modes to determine the thickness and the S-wave velocity of the near-surface low-velocity layer (LVL) beneath the seafloor. Additionally, we use existing active P-wave seismic reflection data to determine the LVL thickness and to help build a more accurate S-wave velocity model from the S-wave resonance frequencies. The estimated S-wave velocity varies laterally within the LVL formation. Here, we find that the sediments or deposits with high S-wave velocity presented in the estimated LVL model agree with the distribution of some glacigenic sediments and landforms deposited in the survey area. Therefore, S-wave resonances measured by ocean-bottom DAS can be used to characterize the corresponding near-surface LVLs.
当岩石基底上的表层海洋沉积物具有相对较低的 S 波速度时,通常会观测到剪切波(S 波)共振。我们利用挪威斯瓦尔巴群岛两条海底光纤通信电缆中的海底光纤分布式声学传感(DAS)观测到了这些现象。触发和增强 S 波共振的多阶模式需要来自足够大的地震的强大地震能量。在此,我们利用解释的前两种模式的 S 波共振频率来确定海底下近表面低速层 (LVL) 的厚度和 S 波速度。此外,我们还利用现有的主动 P 波地震反射数据来确定 LVL 的厚度,并帮助根据 S 波共振频率建立更精确的 S 波速度模型。估计的 S 波速度在 LVL 层内横向变化。在这里,我们发现估算的 LVL 模型中出现的 S 波速度较高的沉积物或沉积层与勘测区沉积的一些冰原沉积物和地貌的分布一致。因此,可以利用海底 DAS 测量的 S 波共振来描述相应的近地表 LVL。