Roadway Inspection System

Aditya Patil, Aniket Kshirsagar, Suraj Lokhande, Suraj Jorwar, Prof. Anuja Garande
{"title":"Roadway Inspection System","authors":"Aditya Patil, Aniket Kshirsagar, Suraj Lokhande, Suraj Jorwar, Prof. Anuja Garande","doi":"10.32628/ijsrset2411259","DOIUrl":null,"url":null,"abstract":"Traditional road inspections are manual processes, prone to human error and inefficiencies. This paper presents a novel approach for automated roadway inspection using a Convolutional Neural Network (CNN) model. Our system leverages computer vision techniques to detect potholes and speed breakers on road surfaces from images. We developed a CNN model trained on a comprehensive dataset of road images containing various pothole and speed breaker types, lighting conditions, and road backgrounds. The model achieved an accuracy of 93% in detecting these road defects, demonstrating the effectiveness of deep learning for automated roadway inspections. This system has the potential to significantly improve the efficiency and objectivity of road inspections, leading to faster repairs and improved road safety","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"18 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional road inspections are manual processes, prone to human error and inefficiencies. This paper presents a novel approach for automated roadway inspection using a Convolutional Neural Network (CNN) model. Our system leverages computer vision techniques to detect potholes and speed breakers on road surfaces from images. We developed a CNN model trained on a comprehensive dataset of road images containing various pothole and speed breaker types, lighting conditions, and road backgrounds. The model achieved an accuracy of 93% in detecting these road defects, demonstrating the effectiveness of deep learning for automated roadway inspections. This system has the potential to significantly improve the efficiency and objectivity of road inspections, leading to faster repairs and improved road safety
路面检测系统
传统的道路检测都是人工操作,容易出现人为错误,效率低下。本文介绍了一种使用卷积神经网络(CNN)模型进行自动路面检测的新方法。我们的系统利用计算机视觉技术从图像中检测路面上的坑洞和减速带。我们开发了一个 CNN 模型,该模型是在一个包含各种坑洞和减速带类型、光照条件和道路背景的综合道路图像数据集上进行训练的。该模型在检测这些道路缺陷方面达到了 93% 的准确率,证明了深度学习在道路自动检测方面的有效性。该系统有望显著提高道路检测的效率和客观性,从而加快维修速度并改善道路安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信