Nonflammable in situ PDOL-based gel polymer electrolyte for high-energy-density and high safety lithium metal batteries

Wenhao Tang, Taotao Zhou, Yang Duan, Miaomiao Zhou, Zhenchao Li, Ruiping Liu
{"title":"Nonflammable in situ PDOL-based gel polymer electrolyte for high-energy-density and high safety lithium metal batteries","authors":"Wenhao Tang,&nbsp;Taotao Zhou,&nbsp;Yang Duan,&nbsp;Miaomiao Zhou,&nbsp;Zhenchao Li,&nbsp;Ruiping Liu","doi":"10.1002/cnl2.130","DOIUrl":null,"url":null,"abstract":"<p>Due to its high energy density and low interface impedance, in situ polymerized gel electrolytes were considered as a promising electrolyte candidate for lithium metal batteries (LMBs). In this work, a new flame-retardant gel electrolyte was prepared via in situ ring-opening polymerization of DOL and TEP. The PDOL–TEP electrolyte exhibits excellent room temperature ionic conductivity (0.38 mS cm<sup>−1</sup>), wide electrochemical window (4.4 V), high Li<sup>+</sup> transference number (0.57), and enhanced safety. Thus, the NCM811||Li cells with PDOL–TEP electrolyte exhibit excellent cycle stability (82.7% of capacity retention rate after 300 cycles at 0.5 C) and rate performance (156 and 119 mAh g<sup>−1</sup> at 0.5 and 1 C). Furthermore, phosphorus radicals decomposed from TEP can combine with hydrogen radicals to block the combustion reaction. This work provides an effective method for the preparation of solid-state LMBs with high voltage, high energy density, and high safety.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its high energy density and low interface impedance, in situ polymerized gel electrolytes were considered as a promising electrolyte candidate for lithium metal batteries (LMBs). In this work, a new flame-retardant gel electrolyte was prepared via in situ ring-opening polymerization of DOL and TEP. The PDOL–TEP electrolyte exhibits excellent room temperature ionic conductivity (0.38 mS cm−1), wide electrochemical window (4.4 V), high Li+ transference number (0.57), and enhanced safety. Thus, the NCM811||Li cells with PDOL–TEP electrolyte exhibit excellent cycle stability (82.7% of capacity retention rate after 300 cycles at 0.5 C) and rate performance (156 and 119 mAh g−1 at 0.5 and 1 C). Furthermore, phosphorus radicals decomposed from TEP can combine with hydrogen radicals to block the combustion reaction. This work provides an effective method for the preparation of solid-state LMBs with high voltage, high energy density, and high safety.

Abstract Image

用于高能量密度和高安全性锂金属电池的不易燃原位 PDOL 基凝胶聚合物电解质
原位聚合凝胶电解质具有高能量密度和低界面阻抗的特点,因此被认为是锂金属电池(LMB)的理想电解质。本研究通过 DOL 和 TEP 的原位开环聚合制备了一种新型阻燃凝胶电解质。PDOL-TEP 电解质具有优异的室温离子电导率(0.38 mS cm-1)、宽电化学窗口(4.4 V)、高 Li+ 转移数(0.57)和更高的安全性。因此,采用 PDOL-TEP 电解质的 NCM811||Li 电池表现出卓越的循环稳定性(0.5 C 条件下循环 300 次后容量保持率为 82.7%)和速率性能(0.5 C 和 1 C 条件下分别为 156 和 119 mAh g-1)。此外,TEP 分解出的磷自由基可与氢自由基结合,阻止燃烧反应。这项工作为制备具有高电压、高能量密度和高安全性的固态 LMB 提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信