Constraining the global composition of D/H and 18O/16O in Martian water using SOFIA/EXES

J. Alday, S. Aoki, C. DeWitt, F. Montmessin, J. A. Holmes, M. Patel, J. Mason, T. Encrenaz, M. J. Richter, P. G. J. Irwin, F. Daerden, N. Terada, H. Nakagawa
{"title":"Constraining the global composition of D/H and 18O/16O in Martian water using SOFIA/EXES","authors":"J. Alday, S. Aoki, C. DeWitt, F. Montmessin, J. A. Holmes, M. Patel, J. Mason, T. Encrenaz, M. J. Richter, P. G. J. Irwin, F. Daerden, N. Terada, H. Nakagawa","doi":"10.1093/mnras/stae1067","DOIUrl":null,"url":null,"abstract":"\n Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (LS = 15○, 127○, 272○, 305○) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 Â ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be $\\sim 5\\%$ larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).","PeriodicalId":506975,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"15 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stae1067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (LS = 15○, 127○, 272○, 305○) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 Â ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be $\sim 5\%$ larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).
利用 SOFIA/EXES 测定火星水中 D/H 和 18O/16O 的全球组成
水蒸气中的同位素比含有关于火星储水层的重要信息。这些比率的局部变化可以为我们提供有关水循环和地表-大气交换的信息。另一方面,大气的全球同位素组成带有长期分馏的印记,提供了有关早期水储量及其历史演变的重要信息。在此,我们报告了利用 SOFIA/EXES 在不同季节(LS = 15○、127○、272○、305○)对水蒸气中 D/H 和 18O/16O 同位素比的测量分析。这些测量没有碲吸收,为确定火星水蒸气的全球同位素组成提供了独特的工具。我们发现在北部夏季观测到的行星 D/H 比率最大(相对于维也纳标准平均海洋水而言,D/H = 5.2 ± 0.2),并且全年呈现出相对较小的变化(北部冬季和春季的 D/H = 5.0 ± 0.2 和 4.3 ± 0.4 VSMOW),这与一阶一致,但明显大于冷凝诱导分馏的预期。我们的测量结果表明,水蒸气的年平均同位素组成符合 D/H = 5.0 ± 0.2 和 18O/16O = 1.09 Â ± 0.08 VSMOW。此外,根据 SOFIA/EXES 测量值与全球气候模式预测值之间的比较,我们估计北部极地冰盖中的 D/H 大于大气储层中的 D/H (D/Hice = 5.3 ± 0.3 VSMOW)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信