From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition

Anjith George;Sébastien Marcel
{"title":"From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition","authors":"Anjith George;Sébastien Marcel","doi":"10.1109/TBIOM.2024.3365350","DOIUrl":null,"url":null,"abstract":"Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 4","pages":"475-485"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10433849/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.
从模式到风格:反思异构人脸识别中的领域差距
异构人脸识别(HFR)侧重于匹配来自不同领域的人脸,例如热图像和可见光图像,从而使人脸识别(FR)系统在具有挑战性的场景中更具通用性。然而,这些领域之间的差距以及目标 HFR 模式的大规模数据集有限,使得从零开始开发稳健的 HFR 模型具有挑战性。在我们的工作中,我们将不同的模态视为不同的风格,并提出了一种调制目标模态特征图的方法,以解决领域差距问题。我们提出了一种新的条件自适应实例调制(CAIM)模块,可无缝集成到现有的 FR 网络中,将其转化为 HFR 就绪系统。CAIM 模块可对中间特征图进行调制,从而有效地适应源模式的风格,缩小领域差距。我们的方法可以使用一小组配对样本进行端到端训练。我们在各种具有挑战性的 HFR 基准上对所提出的方法进行了广泛评估,结果表明它优于最先进的方法。用于重现研究结果的源代码和协议将公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信