An entropy-based model for quantifying multi-dimensional traffic scenario complexity

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ping Huang, Haitao Ding, Hong Chen
{"title":"An entropy-based model for quantifying multi-dimensional traffic scenario complexity","authors":"Ping Huang,&nbsp;Haitao Ding,&nbsp;Hong Chen","doi":"10.1049/itr2.12510","DOIUrl":null,"url":null,"abstract":"<p>Quantifying the complexity of traffic scenarios not only provides an essential foundation for constructing the scenarios used in autonomous vehicle training and testing, but also enhances the robustness of the resulting driving decisions and planning operations. However, currently available quantification methods suffer from inaccuracies and coarse-granularity in complexity measurements due to issues such as insufficient specificity or indirect quantification. The present work addresses these challenges by proposing a comprehensive entropy-based model for quantifying traffic scenario complexity across multiple dimensions based on a consideration of the essential components of the traffic environment, including traffic participants, static elements, and dynamic elements. In addition, the limitations of the classical information entropy models applied for assessing traffic scenarios are addressed by calculating magnitude entropy. The proposed entropy-based model is analyzed in detail according to its application to simulated traffic scenarios. Moreover, the model is applied to real world data within a naturalistic driving dataset. Finally, the effectiveness of the proposed quantification model is illustrated by comparing the complexity results obtained for three typical traffic scenarios with those obtained using an existing multi-factor complexity quantification method.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 7","pages":"1289-1305"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying the complexity of traffic scenarios not only provides an essential foundation for constructing the scenarios used in autonomous vehicle training and testing, but also enhances the robustness of the resulting driving decisions and planning operations. However, currently available quantification methods suffer from inaccuracies and coarse-granularity in complexity measurements due to issues such as insufficient specificity or indirect quantification. The present work addresses these challenges by proposing a comprehensive entropy-based model for quantifying traffic scenario complexity across multiple dimensions based on a consideration of the essential components of the traffic environment, including traffic participants, static elements, and dynamic elements. In addition, the limitations of the classical information entropy models applied for assessing traffic scenarios are addressed by calculating magnitude entropy. The proposed entropy-based model is analyzed in detail according to its application to simulated traffic scenarios. Moreover, the model is applied to real world data within a naturalistic driving dataset. Finally, the effectiveness of the proposed quantification model is illustrated by comparing the complexity results obtained for three typical traffic scenarios with those obtained using an existing multi-factor complexity quantification method.

Abstract Image

基于熵的多维交通场景复杂性量化模型
量化交通场景的复杂性不仅为构建自动驾驶汽车培训和测试中使用的场景奠定了重要基础,还能增强由此产生的驾驶决策和规划操作的稳健性。然而,由于特异性不足或间接量化等问题,目前可用的量化方法存在复杂性测量不准确和粒度粗糙的问题。本研究针对这些挑战,在考虑交通环境基本要素(包括交通参与者、静态要素和动态要素)的基础上,提出了一种基于熵的综合模型,用于从多个维度量化交通场景的复杂性。此外,还通过计算熵值解决了用于评估交通场景的经典信息熵模型的局限性。根据模拟交通场景的应用情况,对所提出的基于熵的模型进行了详细分析。此外,该模型还应用于自然驾驶数据集中的真实世界数据。最后,通过比较三个典型交通场景与现有多因素复杂性量化方法得出的复杂性结果,说明了所提量化模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信