Two-weight extrapolation on function spaces and applications

Pub Date : 2024-04-22 DOI:10.1002/mana.202300120
Mingming Cao, Andrea Olivo
{"title":"Two-weight extrapolation on function spaces and applications","authors":"Mingming Cao,&nbsp;Andrea Olivo","doi":"10.1002/mana.202300120","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to studying the extrapolation theory of Rubio de Francia on general function spaces. We present endpoint extrapolation results including <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <annotation>$A_1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>p</mi>\n </msub>\n <annotation>$A_p$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$A_\\infty$</annotation>\n </semantics></math> extrapolation in the context of Banach function spaces, and also on modular spaces. We also include several applications that can be easily obtained using extrapolation: local decay estimates for various operators, Coifman–Fefferman inequalities that can be used to show some known sharp <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <annotation>$A_1$</annotation>\n </semantics></math> inequalities, Muckenhoupt–Wheeden and Sawyer's conjectures are also presented for many operators, which go beyond Calderón–Zygmund operators. Finally, we obtain two-weight inequalities for Littlewood–Paley operators and Fourier integral operators on weighted Banach function spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to studying the extrapolation theory of Rubio de Francia on general function spaces. We present endpoint extrapolation results including A 1 $A_1$ , A p $A_p$ , and A $A_\infty$ extrapolation in the context of Banach function spaces, and also on modular spaces. We also include several applications that can be easily obtained using extrapolation: local decay estimates for various operators, Coifman–Fefferman inequalities that can be used to show some known sharp A 1 $A_1$ inequalities, Muckenhoupt–Wheeden and Sawyer's conjectures are also presented for many operators, which go beyond Calderón–Zygmund operators. Finally, we obtain two-weight inequalities for Littlewood–Paley operators and Fourier integral operators on weighted Banach function spaces.

分享
查看原文
函数空间上的二重外推法及其应用
本文致力于研究 Rubio de Francia 关于一般函数空间的外推法理论。我们介绍了端点外推法的结果,包括巴拿赫函数空间的 、 、 和外推法,以及模块空间的外推法。我们还介绍了利用外推法可以轻松获得的几种应用:各种算子的局部衰减估计、可用于证明一些已知尖锐不等式的 Coifman-Fefferman 不等式、许多算子的 Muckenhoupt-Wheeden 和 Sawyer 猜想,这些猜想超出了 Calderón-Zygmund 算子的范围。最后,我们得到了加权巴拿赫函数空间上 Littlewood-Paley 算子和傅里叶积分算子的两重不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信