Stability of a Fractional Opinion Formation Model with and without Leadership Using the New Generalized Hattaf Fractional Derivative

4区 工程技术 Q1 Mathematics
M. Ait Ichou, K. Hattaf
{"title":"Stability of a Fractional Opinion Formation Model with and without Leadership Using the New Generalized Hattaf Fractional Derivative","authors":"M. Ait Ichou, K. Hattaf","doi":"10.1155/2024/6652993","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze the dynamical behaviors of two opinion formation models, one with leadership and the other without leadership. The two proposed models are formulated by fractional differential equations (FDEs) with the frame of the new generalized Hattaf fractional (GHF) derivative. The stability in the sense of Mittag–Leffler is rigorously established for both models. The convergence of agents’ opinions to the consensus opinion is fully investigated. Numerical simulations are given to illustrate the analytical results.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"27 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6652993","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze the dynamical behaviors of two opinion formation models, one with leadership and the other without leadership. The two proposed models are formulated by fractional differential equations (FDEs) with the frame of the new generalized Hattaf fractional (GHF) derivative. The stability in the sense of Mittag–Leffler is rigorously established for both models. The convergence of agents’ opinions to the consensus opinion is fully investigated. Numerical simulations are given to illustrate the analytical results.
使用新广义哈塔夫分式导数的有领导力和无领导力分式舆论形成模型的稳定性
在本文中,我们提出并分析了两种舆论形成模型的动态行为,一种是有领导力模型,另一种是无领导力模型。所提出的两个模型都是在新的广义哈塔夫分数(GHF)导数框架下用分数微分方程(FDE)表示的。两个模型都严格建立了 Mittag-Leffler 意义上的稳定性。充分研究了代理意见向共识意见的收敛性。我们还给出了数值模拟来说明分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信