Design, thermal-mechanical coupling analysis, and optimization of polymeric matrix composite sandwiches with a lattice core exposed to a high temperature
IF 2.5 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hiba Al Amouri, K. Khalil, Georgio Rizk, S. Alfayad
{"title":"Design, thermal-mechanical coupling analysis, and optimization of polymeric matrix composite sandwiches with a lattice core exposed to a high temperature","authors":"Hiba Al Amouri, K. Khalil, Georgio Rizk, S. Alfayad","doi":"10.1177/14644207241244505","DOIUrl":null,"url":null,"abstract":"This study presents the design of a sandwich structure tailored for post-heat transfer applications subjected to out-of-plane compression. A three-dimensional finite element simulation model was developed to analyze the temperature distribution within the sandwich structure and investigate the effects of high-temperature exposure on its mechanical behaviors. The structure was subjected to a temperature of 300 °C for 400 s, and the temperature distribution at the upper connection point between the top face sheet and the struts of the core was determined. Subsequently, upon returning the sandwich to ambient temperature, a comprehensive calculation of its mechanical properties was conducted and then enhanced by applying different optimization techniques. The results demonstrate that filling the core with Saffil alumina fibers in the presence of a 1.5 mm a thermal barrier coating of Superwool 607 helps increase the mechanical properties of the sandwich structure by around 55%.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241244505","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design of a sandwich structure tailored for post-heat transfer applications subjected to out-of-plane compression. A three-dimensional finite element simulation model was developed to analyze the temperature distribution within the sandwich structure and investigate the effects of high-temperature exposure on its mechanical behaviors. The structure was subjected to a temperature of 300 °C for 400 s, and the temperature distribution at the upper connection point between the top face sheet and the struts of the core was determined. Subsequently, upon returning the sandwich to ambient temperature, a comprehensive calculation of its mechanical properties was conducted and then enhanced by applying different optimization techniques. The results demonstrate that filling the core with Saffil alumina fibers in the presence of a 1.5 mm a thermal barrier coating of Superwool 607 helps increase the mechanical properties of the sandwich structure by around 55%.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).