Module categories, internal bimodules, and Tambara modules

IF 1.5 1区 数学 Q1 MATHEMATICS
Mateusz Stroiński
{"title":"Module categories, internal bimodules, and Tambara modules","authors":"Mateusz Stroiński","doi":"10.1112/plms.12596","DOIUrl":null,"url":null,"abstract":"We use the theory of Tambara modules to extend and generalize the reconstruction theorem for module categories over a rigid monoidal category to the nonrigid case. We show a biequivalence between the 2‐category of cyclic module categories over a monoidal category and the bicategory of algebra and bimodule objects in the category of Tambara modules on . Using it, we prove that a cyclic module category can be reconstructed as the category of certain free module objects in the category of Tambara modules on , and give a sufficient condition for its reconstructability as module objects in . To that end, we extend the definition of the Cayley functor to the nonclosed case, and show that Tambara modules give a proarrow equipment for ‐module categories, in which ‐module functors are characterized as 1‐morphisms admitting a right adjoint. Finally, we show that the 2‐category of all ‐module categories embeds into the 2‐category of categories enriched in Tambara modules on , giving an “action via enrichment” result.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12596","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use the theory of Tambara modules to extend and generalize the reconstruction theorem for module categories over a rigid monoidal category to the nonrigid case. We show a biequivalence between the 2‐category of cyclic module categories over a monoidal category and the bicategory of algebra and bimodule objects in the category of Tambara modules on . Using it, we prove that a cyclic module category can be reconstructed as the category of certain free module objects in the category of Tambara modules on , and give a sufficient condition for its reconstructability as module objects in . To that end, we extend the definition of the Cayley functor to the nonclosed case, and show that Tambara modules give a proarrow equipment for ‐module categories, in which ‐module functors are characterized as 1‐morphisms admitting a right adjoint. Finally, we show that the 2‐category of all ‐module categories embeds into the 2‐category of categories enriched in Tambara modules on , giving an “action via enrichment” result.
模块类别、内部双模块和坦巴拉模块
我们利用坦巴拉模块理论,将刚性单义范畴上模块范畴的重构定理推广到非刚性范畴。我们证明了单义范畴上的循环模块范畴的 2 类与......上的坦巴拉模块范畴中的代数和双模块对象的二类之间的等价性。利用它,我们证明了循环模块范畴可以重构为ⅣⅤⅥ上坦巴拉模块范畴中某些自由模块对象的范畴,并给出了ⅣⅤⅥ上坦巴拉模块范畴中模块对象可重构性的充分条件。为此,我们将 Cayley 函数的定义扩展到非封闭的情况,并证明坦巴拉模块为-模块范畴提供了一个原row设备,在这个设备中,-模块函数被描述为允许右邻接的 1-态。最后,我们证明了所有-模块范畴的2范畴嵌入了在坦巴拉模块上丰富了的范畴的2范畴,给出了一个 "通过丰富作用 "的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信