Actuator fault estimation in wind turbine using a modified sliding mode observer based on Linear Matrix Inequality approach

Diagnostyka Pub Date : 2024-04-23 DOI:10.29354/diag/187887
Mohammed Taouil, Abdelghani El Ougli, B. Tidhaf
{"title":"Actuator fault estimation in wind turbine using a modified sliding mode observer based on Linear Matrix Inequality approach","authors":"Mohammed Taouil, Abdelghani El Ougli, B. Tidhaf","doi":"10.29354/diag/187887","DOIUrl":null,"url":null,"abstract":"This paper presents a fault detection and isolation (FDI) method applied to a wind turbine system. The approach utilizes a nonlinear sliding mode observer (SMO) to effectively reconstruct faults in both the hydraulic pitch actuator and generator torque actuator of the wind turbine. A Linear Matrix Inequality (LMI) optimization approach is employed for the design. The blade pitch angle and generator torque in the wind turbine have significantly different orders of magnitudes, rendering them vulnerable to faults of different magnitudes. This discrepancy poses a challenge for the simultaneous reconstruction of faults. To resolve this challenge, a modification is made to the observer. To examine the effectiveness of the modified SMO, two fault scenarios were considered for the hydraulic pitch actuator and generator torque actuator. In the first case, faults are introduced separately, while in the second case, faults occur simultaneously. Simulation results demonstrate accurate detection, isolation, and reconstruction of these faults, whether in the case of separate or simultaneous fault occurrences.","PeriodicalId":504729,"journal":{"name":"Diagnostyka","volume":"56 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/187887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a fault detection and isolation (FDI) method applied to a wind turbine system. The approach utilizes a nonlinear sliding mode observer (SMO) to effectively reconstruct faults in both the hydraulic pitch actuator and generator torque actuator of the wind turbine. A Linear Matrix Inequality (LMI) optimization approach is employed for the design. The blade pitch angle and generator torque in the wind turbine have significantly different orders of magnitudes, rendering them vulnerable to faults of different magnitudes. This discrepancy poses a challenge for the simultaneous reconstruction of faults. To resolve this challenge, a modification is made to the observer. To examine the effectiveness of the modified SMO, two fault scenarios were considered for the hydraulic pitch actuator and generator torque actuator. In the first case, faults are introduced separately, while in the second case, faults occur simultaneously. Simulation results demonstrate accurate detection, isolation, and reconstruction of these faults, whether in the case of separate or simultaneous fault occurrences.
使用基于线性矩阵不等式方法的改进型滑模观测器估计风力涡轮机中的致动器故障
本文介绍了一种应用于风力涡轮机系统的故障检测和隔离(FDI)方法。该方法利用非线性滑模观测器 (SMO) 有效重建风力涡轮机液压变桨作动器和发电机扭矩作动器中的故障。设计中采用了线性矩阵不等式(LMI)优化方法。风力涡轮机中的叶片桨距角和发电机扭矩的量级相差很大,因此容易受到不同量级故障的影响。这种差异给同时重建故障带来了挑战。为解决这一难题,对观测器进行了修改。为了检验修改后的 SMO 的有效性,考虑了液压变桨作动器和发电机扭矩作动器的两种故障情况。在第一种情况下,故障分别发生,而在第二种情况下,故障同时发生。仿真结果表明,无论是单独还是同时出现故障,都能准确地检测、隔离和重建这些故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信