On periodic solutions to the Hamilton system associated with the Schrödinger operators with strongly nonlinear potentials

IF 1.4 3区 数学 Q1 MATHEMATICS
Sheng-Ya Feng, Der-Chen Chang
{"title":"On periodic solutions to the Hamilton system associated with the Schrödinger operators with strongly nonlinear potentials","authors":"Sheng-Ya Feng,&nbsp;Der-Chen Chang","doi":"10.1007/s13324-024-00914-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we start from the periodic geodesic of generalized Hermite operators, and analyze their geometric characteristics and analytical properties. For the quantitative study of periodic solutions to the Schrödinger operators with non-polynomial potentials, we systematically discuss the corresponding Hamilton system, and use the harmonic balance method (HBM) and the modified harmonic balance method (mHBM) to approximate and estimate the periodic solution in high accuracy.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00914-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we start from the periodic geodesic of generalized Hermite operators, and analyze their geometric characteristics and analytical properties. For the quantitative study of periodic solutions to the Schrödinger operators with non-polynomial potentials, we systematically discuss the corresponding Hamilton system, and use the harmonic balance method (HBM) and the modified harmonic balance method (mHBM) to approximate and estimate the periodic solution in high accuracy.

论与具有强非线性势的薛定谔算子相关的汉密尔顿系统的周期解
本文从广义赫米特算子的周期性大地线入手,分析了其几何特征和分析性质。为了定量研究具有非多项式势的薛定谔算子的周期解,我们系统地讨论了相应的汉密尔顿系统,并利用谐波平衡法(HBM)和修正谐波平衡法(mHBM)对周期解进行了高精度的近似和估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信