Commutators of Riesz transforms associated with higher order Schrödinger type operators

IF 1.4 3区 数学 Q1 MATHEMATICS
Yanhui Wang
{"title":"Commutators of Riesz transforms associated with higher order Schrödinger type operators","authors":"Yanhui Wang","doi":"10.1007/s13324-024-00915-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>m</i> be a nonnegative integer, and let <span>\\(n\\ge 2^{m+1}+1.\\)</span> In this paper, we consider the higher order Schrödinger type operator <span>\\({\\mathcal {H}}_{2^m}=(-\\Delta )^{2^m}+V^{2^m} \\)</span> on <span>\\({\\mathbb {R}}^n,\\)</span> and establish the <span>\\(L^p({\\mathbb {R}}^n)\\)</span> boundedness of Riesz transforms <span>\\(\\nabla ^j {\\mathcal {H}}_{2^m}^{-\\frac{j}{2^{m+1}}} (j=1,2,\\cdot \\cdot \\cdot ,2^{m+1}-1)\\)</span> and their commutators. Here, <i>V</i> is a nonnegative potential belonging to both the reverse Hölder class <span>\\(RH_s\\)</span> for <span>\\(s \\ge \\frac{n}{2}\\)</span>, and the Gaussian class associated with <span>\\((-\\Delta )^{2^m}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00915-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let m be a nonnegative integer, and let \(n\ge 2^{m+1}+1.\) In this paper, we consider the higher order Schrödinger type operator \({\mathcal {H}}_{2^m}=(-\Delta )^{2^m}+V^{2^m} \) on \({\mathbb {R}}^n,\) and establish the \(L^p({\mathbb {R}}^n)\) boundedness of Riesz transforms \(\nabla ^j {\mathcal {H}}_{2^m}^{-\frac{j}{2^{m+1}}} (j=1,2,\cdot \cdot \cdot ,2^{m+1}-1)\) and their commutators. Here, V is a nonnegative potential belonging to both the reverse Hölder class \(RH_s\) for \(s \ge \frac{n}{2}\), and the Gaussian class associated with \((-\Delta )^{2^m}\).

与高阶薛定谔型算子相关的里兹变换的换元
让 m 是一个非负整数,并且让 \(n\ge 2^{m+1}+1.\) 在本文中,我们考虑了高阶薛定谔型算子 \({\mathcal {H}}_{2^m}=(-\Delta )^{2^m}+V^{2^m}\在({\mathbb {R}}^n,\) 上,建立 Riesz transforms 的 \(L^p({\mathbb {R}}^n)\) 有界性(\nabla ^j {\mathcal {H}}_{2^m}^{-\frac{j}{2^{m+1}}} (j=1、2,\cdot \cdot ,2^{m+1}-1)\) 及其换元。这里,V是一个非负的势,既属于\(s \ge \frac{n}{2}\) 的反向霍尔德类\(RH_s\),也属于与\((-\Delta )^{2^m}\)相关的高斯类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信