A hybrid approach for malware detection in SDN‐enabled IoT scenarios

Cristian H. M. Souza, Carlos H. Arima
{"title":"A hybrid approach for malware detection in SDN‐enabled IoT scenarios","authors":"Cristian H. M. Souza, Carlos H. Arima","doi":"10.1002/itl2.534","DOIUrl":null,"url":null,"abstract":"Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, Heimdall exhibits a 98.44% detection rate and an average processing time of 0.0217 s.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":"104 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, Heimdall exhibits a 98.44% detection rate and an average processing time of 0.0217 s.
在支持 SDN 的物联网场景中检测恶意软件的混合方法
在物联网(IoT)兴起的推动下,恶意软件对计算机系统安全构成了重大威胁,尤其是在 ARM 和 MIPS 架构中。本文介绍了一种混合方法 Heimdall,它将 YARA 签名和机器学习集成到可编程交换机中,用于在支持 SDN 的物联网环境中高效检测恶意软件。机器学习分类器对 IoT-23 数据集的准确率达到 99.33%。在使用真实恶意软件样本的模拟环境中进行评估时,Heimdall 的检测率为 98.44%,平均处理时间为 0.0217 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信