Emanuel Guillermo Muñoz Muñoz, Douglas Andrés Verduga Alcívar, Guerrero Alcívar Yandri Francinet, Miguel Angel Lapo Palacios, Octavio Zorrilla Briones
{"title":"Búsqueda de Patrones con Machine Learning en Datos de Siniestros de Tránsito","authors":"Emanuel Guillermo Muñoz Muñoz, Douglas Andrés Verduga Alcívar, Guerrero Alcívar Yandri Francinet, Miguel Angel Lapo Palacios, Octavio Zorrilla Briones","doi":"10.37811/cl_rcm.v8i2.10592","DOIUrl":null,"url":null,"abstract":"Este estudio investiga la aplicación de técnicas de Machine Learning (ML), específicamente el algoritmo de clustering K-Means y la reducción de dimensionalidad mediante PCA, para identificar patrones en datos de siniestros de tránsito. Analizando un conjunto de datos que incluye 21,352 registros de siniestros, este trabajo clasifica los accidentes en cuatro clusters distintos, revelando diferencias significativas en las características de los siniestros relacionadas con la ubicación, hora del día, causas y condiciones ambientales. Los resultados destacan la complejidad de los factores que contribuyen a los siniestros de tránsito y subrayan la necesidad de intervenciones personalizadas para mejorar la seguridad vial. Este enfoque permite una comprensión más profunda de los patrones de siniestros, facilitando el desarrollo de políticas y estrategias de prevención más efectivas. Este estudio no solo amplía la literatura existente, ofreciendo una metodología analítica robusta para el análisis de datos de siniestros, sino que también proporciona orientación práctica para la implementación de intervenciones de seguridad vial dirigidas y basadas en evidencia. Recomendamos futuras investigaciones para incluir más variables, comparar diferentes modelos de ML y realizar estudios longitudinales que permitan evaluar la evolución de los patrones de siniestros y la efectividad de las políticas de seguridad vial implementadas.","PeriodicalId":118736,"journal":{"name":"Ciencia Latina Revista Científica Multidisciplinar","volume":"136 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia Latina Revista Científica Multidisciplinar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37811/cl_rcm.v8i2.10592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este estudio investiga la aplicación de técnicas de Machine Learning (ML), específicamente el algoritmo de clustering K-Means y la reducción de dimensionalidad mediante PCA, para identificar patrones en datos de siniestros de tránsito. Analizando un conjunto de datos que incluye 21,352 registros de siniestros, este trabajo clasifica los accidentes en cuatro clusters distintos, revelando diferencias significativas en las características de los siniestros relacionadas con la ubicación, hora del día, causas y condiciones ambientales. Los resultados destacan la complejidad de los factores que contribuyen a los siniestros de tránsito y subrayan la necesidad de intervenciones personalizadas para mejorar la seguridad vial. Este enfoque permite una comprensión más profunda de los patrones de siniestros, facilitando el desarrollo de políticas y estrategias de prevención más efectivas. Este estudio no solo amplía la literatura existente, ofreciendo una metodología analítica robusta para el análisis de datos de siniestros, sino que también proporciona orientación práctica para la implementación de intervenciones de seguridad vial dirigidas y basadas en evidencia. Recomendamos futuras investigaciones para incluir más variables, comparar diferentes modelos de ML y realizar estudios longitudinales que permitan evaluar la evolución de los patrones de siniestros y la efectividad de las políticas de seguridad vial implementadas.