{"title":"Accelerated Carbonation of Steel Slag and Their Valorisation in Cement Products: A Review","authors":"Giada Biava, L. Depero, E. Bontempi","doi":"10.3389/sjss.2024.12908","DOIUrl":null,"url":null,"abstract":"Mineral carbonation emerges as a promising technology to tackle a contemporary challenge: climate change. This method entails the interaction of carbon dioxide with metal-oxide-bearing materials to produce solid carbonates resembling common substances (chalk, antacids, or baking soda). Given that steelmaking industries contribute to 8% of the global total emissions annually, the repurposing of their by-products holds the potential to mitigate CO2 production. Steel slag is a by-product of the metallurgical industry which is suitable for capturing CO2 due to its chemical composition, containing high CaO (24%–65%) and MgO (3%–20%) amounts, which increases the reactivity with the CO2. Moreover, the carbonation process can improve the hydraulic and mechanical properties of steel slag, making this by-product interesting to be reused in building materials. Different studies have developed in the last years addressing the possibilities of reducing the environmental impact of steel products, by CO2 sequestration. This study is dedicated to reviewing the basics of mineral carbonation applied to steel slag, along with recent advancements in research. Special emphasis is placed on identifying parameters that facilitate the reactions and exploring potential applications for the resulting products. The advantages and disadvantages of steel slag carbonation for the industrialization of the process are also discussed.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2024.12908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral carbonation emerges as a promising technology to tackle a contemporary challenge: climate change. This method entails the interaction of carbon dioxide with metal-oxide-bearing materials to produce solid carbonates resembling common substances (chalk, antacids, or baking soda). Given that steelmaking industries contribute to 8% of the global total emissions annually, the repurposing of their by-products holds the potential to mitigate CO2 production. Steel slag is a by-product of the metallurgical industry which is suitable for capturing CO2 due to its chemical composition, containing high CaO (24%–65%) and MgO (3%–20%) amounts, which increases the reactivity with the CO2. Moreover, the carbonation process can improve the hydraulic and mechanical properties of steel slag, making this by-product interesting to be reused in building materials. Different studies have developed in the last years addressing the possibilities of reducing the environmental impact of steel products, by CO2 sequestration. This study is dedicated to reviewing the basics of mineral carbonation applied to steel slag, along with recent advancements in research. Special emphasis is placed on identifying parameters that facilitate the reactions and exploring potential applications for the resulting products. The advantages and disadvantages of steel slag carbonation for the industrialization of the process are also discussed.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.