Mohammed Al-Bujasim, Metin Gençten, K. B. Dönmez, M. B. Arvas, N. Karatepe, Y. Şahin
{"title":"A Tripartite Composite Incorporating Nitrogen-Doped Graphene Oxide, Polypyrrole, and Silica for Lithium-Ion Battery Anodes","authors":"Mohammed Al-Bujasim, Metin Gençten, K. B. Dönmez, M. B. Arvas, N. Karatepe, Y. Şahin","doi":"10.1149/2162-8777/ad423b","DOIUrl":null,"url":null,"abstract":"\n In this study, N-doped graphene oxide-polypyrrole-silica (NGO-PPy-SiO2) composite was employed as a possible anode in Li-ion batteries. The chronoamperometric technique was employed to synthesize NGO, and within this study two samples were produced, one characterized by a high polypyrrle content (N1) and the other by a low polypyrrle content (N2). N2 has the maximum initial discharge capacity of 785 mAh/g at 0.1C, which is greater than N1's capacity of 501 mAh/g. The initial coulombic efficiency of the first cycle is around 72%, whereas the ICE of N2 is approximately 60%. N1 demonstrates outstanding cycling performance for 100 cycles at high rate (10 C) with maintain capacity as 100% and coulombic efficiency of 100%, as well as extremely stable capacity during the cycling. N2 has a maintain capacity of ≈ 79% and excellent coulombic efficiency, however the capacity during cycling is not as stable as N1.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad423b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, N-doped graphene oxide-polypyrrole-silica (NGO-PPy-SiO2) composite was employed as a possible anode in Li-ion batteries. The chronoamperometric technique was employed to synthesize NGO, and within this study two samples were produced, one characterized by a high polypyrrle content (N1) and the other by a low polypyrrle content (N2). N2 has the maximum initial discharge capacity of 785 mAh/g at 0.1C, which is greater than N1's capacity of 501 mAh/g. The initial coulombic efficiency of the first cycle is around 72%, whereas the ICE of N2 is approximately 60%. N1 demonstrates outstanding cycling performance for 100 cycles at high rate (10 C) with maintain capacity as 100% and coulombic efficiency of 100%, as well as extremely stable capacity during the cycling. N2 has a maintain capacity of ≈ 79% and excellent coulombic efficiency, however the capacity during cycling is not as stable as N1.