Charge-Traps, Thermal Stability and Water-Uptakes of CaSiO3/EP and SiO2/EP Nanocomposites from Molecular Simulations and First-Principles Calculations

Yanyan Zhang, Weifeng Sun
{"title":"Charge-Traps, Thermal Stability and Water-Uptakes of CaSiO3/EP and SiO2/EP Nanocomposites from Molecular Simulations and First-Principles Calculations","authors":"Yanyan Zhang, Weifeng Sun","doi":"10.1149/2162-8777/ad423a","DOIUrl":null,"url":null,"abstract":"\n Various analytical methods were employed to elucidate the effects of filling nano-calcium-silicate or nano-silica on the electronic property, water-uptake, and thermal stability of an amine-crosslinked epoxy (EP) polymer. Molecular-mixture models consisting of a nanofiller or several calcium ions and EP crosslinked macro-molecules were used to simulate local regions of nanofiller/matrix interface or ion-infiltrated matrix, calculating their density of electron-states by first-principles method to determine whether and how the nanofillers introduce charge traps into EP matrix. Calcium cations on nanofiller surface dissociate away from coordinating with silicon-oxygen tetrahedron and infiltrate into void spaces in EP matrix, leaving a larger free volume at filler/matrix interface than in matrix. Calcium cations dissolved in EP matrix adsorbed in the low electrostatic potential region or coordinate with carbonyl groups in EP matrix and thus introduce a miniband of deep electron traps at energy levels >1eV lower than conduction band minimum of the amine-crosslinked EP polymer. Even at room temperature, thermal vibrations can break coordinate bonds between calcium cations and silicon-oxygen framework on calcium-silicate nanofiller surface and make considerable calcium ions infiltrating void spaces within EP matrix, leading to comprehensive improvements of cohesive energy, thermal stability, and charge trapping ability in the calcium-silicate/EP nanocomposite.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad423a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various analytical methods were employed to elucidate the effects of filling nano-calcium-silicate or nano-silica on the electronic property, water-uptake, and thermal stability of an amine-crosslinked epoxy (EP) polymer. Molecular-mixture models consisting of a nanofiller or several calcium ions and EP crosslinked macro-molecules were used to simulate local regions of nanofiller/matrix interface or ion-infiltrated matrix, calculating their density of electron-states by first-principles method to determine whether and how the nanofillers introduce charge traps into EP matrix. Calcium cations on nanofiller surface dissociate away from coordinating with silicon-oxygen tetrahedron and infiltrate into void spaces in EP matrix, leaving a larger free volume at filler/matrix interface than in matrix. Calcium cations dissolved in EP matrix adsorbed in the low electrostatic potential region or coordinate with carbonyl groups in EP matrix and thus introduce a miniband of deep electron traps at energy levels >1eV lower than conduction band minimum of the amine-crosslinked EP polymer. Even at room temperature, thermal vibrations can break coordinate bonds between calcium cations and silicon-oxygen framework on calcium-silicate nanofiller surface and make considerable calcium ions infiltrating void spaces within EP matrix, leading to comprehensive improvements of cohesive energy, thermal stability, and charge trapping ability in the calcium-silicate/EP nanocomposite.
从分子模拟和第一性原理计算看 CaSiO3/EP 和 SiO2/EP 纳米复合材料的电荷陷阱、热稳定性和吸水性
采用多种分析方法阐明了填充纳米硅酸钙或纳米二氧化硅对胺交联环氧(EP)聚合物的电子特性、吸水性和热稳定性的影响。使用由一个纳米填料或几个钙离子和环氧交联大分子组成的分子混合物模型模拟纳米填料/基质界面或离子渗入基质的局部区域,通过第一原理方法计算其电子态密度,以确定纳米填料是否以及如何在环氧基质中引入电荷陷阱。纳米填料表面的钙阳离子从与硅氧四面体的配位中解离出来,渗入 EP 基质的空隙中,在填料/基质界面处留下了比基质中更大的自由体积。溶解在 EP 基质中的钙阳离子吸附在低静电位区域,或与 EP 基质中的羰基配位,从而在比胺交联 EP 聚合物最低导带低 >1eV 的能级上引入了一个小的深电子陷阱带。即使在室温下,热振动也能破坏硅酸钙纳米填料表面的钙阳离子与硅氧框架之间的配位键,使大量钙离子渗入 EP 基体的空隙中,从而全面提高硅酸钙/EP 纳米复合材料的内聚能、热稳定性和电荷捕获能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信