Viktor Bryzgalov, Nurlibay Shlimbetov, Anton Voytishek
{"title":"Choice of a constant in the expression for the error of the Monte Carlo method","authors":"Viktor Bryzgalov, Nurlibay Shlimbetov, Anton Voytishek","doi":"10.1515/mcma-2024-2004","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This paper considers three approaches to choosing the constant <jats:italic>H</jats:italic> in the expression <jats:inline-formula id=\"j_mcma-2024-2004_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mi>H</m:mi>\n <m:mo></m:mo>\n <m:msqrt>\n <m:mrow>\n <m:mi>𝐃</m:mi>\n <m:mo></m:mo>\n <m:mi>ζ</m:mi>\n </m:mrow>\n </m:msqrt>\n </m:mrow>\n <m:mo>/</m:mo>\n <m:msqrt>\n <m:mi>n</m:mi>\n </m:msqrt>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_mcma-2024-2004_eq_0044.png\" />\n <jats:tex-math>{H\\sqrt{{\\mathbf{D}}\\zeta}/\\sqrt{n}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for the error of the Monte Carlo method for numerical calculation of mathematical expectation <jats:inline-formula id=\"j_mcma-2024-2004_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>𝐄</m:mi>\n <m:mo></m:mo>\n <m:mi>ζ</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_mcma-2024-2004_eq_0114.png\" />\n <jats:tex-math>{{\\mathbf{E}}\\zeta}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> of a random variable ζ: in probability, in mean square and in mean.In practical studies using the Monte Carlo method, when estimating the calculation error, it is recommended to use the “in mean” approach with the constant <jats:inline-formula id=\"j_mcma-2024-2004_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>H</m:mi>\n <m:mo>=</m:mo>\n <m:msqrt>\n <m:mfrac>\n <m:mn>2</m:mn>\n <m:mi>π</m:mi>\n </m:mfrac>\n </m:msqrt>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mn>0.79788456079</m:mn>\n <m:mo></m:mo>\n <m:mi mathvariant=\"normal\">…</m:mi>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_mcma-2024-2004_eq_0043.png\" />\n <jats:tex-math>{H=\\sqrt{\\frac{2}{\\pi}}=0.79788456079\\dots}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> .</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":"60 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2024-2004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers three approaches to choosing the constant H in the expression H𝐃ζ/n{H\sqrt{{\mathbf{D}}\zeta}/\sqrt{n}} for the error of the Monte Carlo method for numerical calculation of mathematical expectation 𝐄ζ{{\mathbf{E}}\zeta} of a random variable ζ: in probability, in mean square and in mean.In practical studies using the Monte Carlo method, when estimating the calculation error, it is recommended to use the “in mean” approach with the constant H=2π=0.79788456079…{H=\sqrt{\frac{2}{\pi}}=0.79788456079\dots} .
This paper considers three approaches to choosing the constant H in the expression H 𝐃 ζ / n {H\sqrt{{\mathbf{D}}\zeta}/\sqrt{n}} for the error of the Monte Carlo method for numerical calculation of mathematical expectation 𝐄 ζ {{\mathbf{E}}\zeta} of a random variable ζ: in probability, in mean square and in mean.In practical studies using the Monte Carlo method, when estimating the calculation error, it is recommended to use the “in mean” approach with the constant H = 2 π = 0.79788456079 … {H=\sqrt{\frac{2}{\pi}}=0.79788456079\dots} .