Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations

S. T. Huseynov, M. J. Aliyev
{"title":"Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations","authors":"S. T. Huseynov, M. J. Aliyev","doi":"10.18287/2541-7525-2024-30-1-23-30","DOIUrl":null,"url":null,"abstract":"We consider a class of second order elliptic equations in divergence form with non-uniform exponential degeneracy. The method used is based on the fact that the degeneracy rates of the eigenvalues of the matrix ||aij(x)|| (function λi(x)) are not the functions of unusual norm |x|, but of some anisotropic distance |x| a−. We assume that the Dirichlet problem for such equations is solvable in the classical sense for every continuous boundary function in any normal domain Ω. \nEstimates for the weak solutions of Dirichlet problem near the boundary point are obtained, and Green’s functions for second order non-uniformly degenerate elliptic equations are constructed.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"65 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2024-30-1-23-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a class of second order elliptic equations in divergence form with non-uniform exponential degeneracy. The method used is based on the fact that the degeneracy rates of the eigenvalues of the matrix ||aij(x)|| (function λi(x)) are not the functions of unusual norm |x|, but of some anisotropic distance |x| a−. We assume that the Dirichlet problem for such equations is solvable in the classical sense for every continuous boundary function in any normal domain Ω. Estimates for the weak solutions of Dirichlet problem near the boundary point are obtained, and Green’s functions for second order non-uniformly degenerate elliptic equations are constructed.
非均匀退化二阶椭圆方程解的一些辅助估计值
我们考虑了一类具有非均匀指数退化的发散形式二阶椭圆方程。所使用的方法基于这样一个事实,即矩阵||aij(x)||(函数λi(x))特征值的退化率不是不寻常规范|x|的函数,而是某种各向异性距离|x| a-的函数。我们假定此类方程的 Dirichlet 问题对于任意法域 Ω 中的每个连续边界函数都是经典意义上可解的,并得到了边界点附近 Dirichlet 问题弱解的估计值,构建了二阶非均匀退化椭圆方程的格林函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信