Developing Exp-FIGARCH Hybrid Models for Time Series Modelling

S. A. Jibrin, A. Osi, Shukurana Shehu
{"title":"Developing Exp-FIGARCH Hybrid Models for Time Series Modelling","authors":"S. A. Jibrin, A. Osi, Shukurana Shehu","doi":"10.4314/dujopas.v10i1c.8","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced a new hybrid model namely Exponential Autoregressive-Fractional Integrated Generalized Autoregressive  Conditional Heteroscedasticity (ExpAR-FIGARCH) model and study financial data. The Daily Nigeria All Share Stock Index that exhibit  nonlinear, volatility and long memory effect were analyzed in the study. The existing ExpAR-Generalized Autoregressive Conditional  Heteroscedasticity (ExpAR-GARCH) model were estimated and compared with the proposed ExpAR-FIGARCHmodel. Results showed that  the new hybrid model is better based on efficient parameters, serial correlation analysis and forecast measures of accuracy. Therefore, as  a conclusion, the current study indicates that the ExpAR-FIGARCHmodel performed better compared to the ExpAR-GARCHhybrid  model. Therefore, the ExpAR-FIGARCHmodel is a better option for modeling nonlinear, volatility and long memory characteristics of time  series. Future study should focus on the application of the developed hybrid ExpAR-FIGARCHmodel using health, meteorological and  economic data. ","PeriodicalId":479620,"journal":{"name":"Dutse Journal of Pure and Applied Sciences","volume":"31 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dutse Journal of Pure and Applied Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.4314/dujopas.v10i1c.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduced a new hybrid model namely Exponential Autoregressive-Fractional Integrated Generalized Autoregressive  Conditional Heteroscedasticity (ExpAR-FIGARCH) model and study financial data. The Daily Nigeria All Share Stock Index that exhibit  nonlinear, volatility and long memory effect were analyzed in the study. The existing ExpAR-Generalized Autoregressive Conditional  Heteroscedasticity (ExpAR-GARCH) model were estimated and compared with the proposed ExpAR-FIGARCHmodel. Results showed that  the new hybrid model is better based on efficient parameters, serial correlation analysis and forecast measures of accuracy. Therefore, as  a conclusion, the current study indicates that the ExpAR-FIGARCHmodel performed better compared to the ExpAR-GARCHhybrid  model. Therefore, the ExpAR-FIGARCHmodel is a better option for modeling nonlinear, volatility and long memory characteristics of time  series. Future study should focus on the application of the developed hybrid ExpAR-FIGARCHmodel using health, meteorological and  economic data. 
为时间序列建模开发 Exp-FIGARCH 混合模型
本文引入了一种新的混合模型,即指数自回归-分数综合广义自回归条件异方差(ExpAR-FIGARCH)模型,并对金融数据进行了研究。研究分析了尼日利亚每日所有股票指数,该指数表现出非线性、波动性和长记忆效应。对现有的 ExpAR-GARCH 模型进行了估算,并与提出的 ExpAR-FIGARCH 模型进行了比较。结果表明,新的混合模型在有效参数、序列相关性分析和预测准确度方面更胜一筹。因此,作为结论,本研究表明,ExpAR-FIGARCH 模型与 ExpAR-GARCH 混合模型相比表现更好。因此,ExpAR-FIGARCH 模型是对时间序列的非线性、波动性和长记忆特征进行建模的更好选择。今后的研究应侧重于利用健康、气象和经济数据应用所开发的 ExpAR-FIGARCH 混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信