{"title":"A study on Fibo-Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness","authors":"M. C. Dağlı, Taja Yaying","doi":"10.1515/gmj-2024-2021","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we introduce Fibo-Pascal sequence spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0223.png\" />\n <jats:tex-math>{0<p<\\infty}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> through the utilization of the Fibo-Pascal matrix <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>P</m:mi>\n <m:mi>F</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0250.png\" />\n <jats:tex-math>{P^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. We establish that both <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are <jats:italic>BK</jats:italic>-spaces, enjoying a linear isomorphism with the classical spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi>p</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0341.png\" />\n <jats:tex-math>{\\ell_{p}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9992\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0337.png\" />\n <jats:tex-math>{\\ell_{\\infty}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9991\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9990\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9989\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9988\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9987\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. The final section of this study is dedicated to the met","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce Fibo-Pascal sequence spaces PpF{P_{p}^{F}}, 0<p<∞{0
, and P∞F{P_{\infty}^{F}} through the utilization of the Fibo-Pascal matrix PF{P^{F}}. We establish that both PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}} are BK-spaces, enjoying a linear isomorphism with the classical spaces ℓp{\ell_{p}} and ℓ∞{\ell_{\infty}}, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space PpF{P_{p}^{F}}, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}}. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}}. The final section of this study is dedicated to the met
在本文中,我们通过利用菲波帕斯卡矩阵 P F {P_{p}^{F}} 引入菲波帕斯卡序列空间 P p F {P_{p}^{F}} , 0 p ∞ {0 , 和 P ∞ F {P_{infty}^{F}} 通过利用 Fibo-Pascal 矩阵 P F {P^{F}}. .我们确定 P p F {P_{p}^{F}} 和 P ∞ F {P_{infty}^{F}} 都是 BK 空间,分别与经典空间 ℓ p {\ell_{p} 和 ℓ ∞ {\ell_{infty}} 具有线性同构性。} 分别。为了进一步加深研究,我们将继续推导 P p F {P_{p}^{F} 空间的 Schauder 基础,并对其进行详尽的计算。} 同时,我们还详尽计算了 P p F {P_{p}^{F} 和 P ∞ F {P_{infty}^{F} 两个空间的 α-、β- 和 γ 对偶。} .此外,我们还负责描述与空间 P p F {P_{p}^{F}} 和 P ∞ F {P_{\infty}^{F}} 有关的某些矩阵映射类别。 .本研究的最后一节将专门讨论