{"title":"A Fuzzy Jump-Diffusion Option Pricing Model Based on the Merton Formula","authors":"Satrajit Mandal, Sujoy Bhattacharya","doi":"10.1007/s10690-024-09456-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a fuzzy jump-diffusion (FJD) option pricing model based on Merton (J Financ Econ 3:125–144, 1976) normal jump-diffusion price dynamics. The logarithm of the stock price is assumed to be a Gaussian fuzzy number and the risk-free interest rate, diffusion, and jump parameters of the Merton model are assumed to be triangular fuzzy numbers to model the impreciseness which occurs due to the variation in financial markets. Using these assumptions, a fuzzy formula for the European call option price has been proposed. Given any value of the option price, its belief degree is obtained by using the bisection search algorithm. Our FJD model is an extension of Xu et al. (Insur Math Econ 44:337–344, 2009) fuzzy normal jump-diffusion model and has been tested on NIFTY 50 and Nikkei 225 indices options. The fuzzy call option prices are defuzzified and it has been found that our FJD model outperforms Wu et al. (Comput Oper Res 31:069–1081, 2004) fuzzy Black-Scholes model for in-the-money (ITM) and near-the-money (NTM) options as well as outperforms Xu et al. (Insur Math Econ 44:337– 344, 2009) model for both ITM and out-of-the-money (OTM) options.</p></div>","PeriodicalId":54095,"journal":{"name":"Asia-Pacific Financial Markets","volume":"32 2","pages":"357 - 380"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Financial Markets","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10690-024-09456-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a fuzzy jump-diffusion (FJD) option pricing model based on Merton (J Financ Econ 3:125–144, 1976) normal jump-diffusion price dynamics. The logarithm of the stock price is assumed to be a Gaussian fuzzy number and the risk-free interest rate, diffusion, and jump parameters of the Merton model are assumed to be triangular fuzzy numbers to model the impreciseness which occurs due to the variation in financial markets. Using these assumptions, a fuzzy formula for the European call option price has been proposed. Given any value of the option price, its belief degree is obtained by using the bisection search algorithm. Our FJD model is an extension of Xu et al. (Insur Math Econ 44:337–344, 2009) fuzzy normal jump-diffusion model and has been tested on NIFTY 50 and Nikkei 225 indices options. The fuzzy call option prices are defuzzified and it has been found that our FJD model outperforms Wu et al. (Comput Oper Res 31:069–1081, 2004) fuzzy Black-Scholes model for in-the-money (ITM) and near-the-money (NTM) options as well as outperforms Xu et al. (Insur Math Econ 44:337– 344, 2009) model for both ITM and out-of-the-money (OTM) options.
期刊介绍:
The current remarkable growth in the Asia-Pacific financial markets is certain to continue. These markets are expected to play a further important role in the world capital markets for investment and risk management. In accordance with this development, Asia-Pacific Financial Markets (formerly Financial Engineering and the Japanese Markets), the official journal of the Japanese Association of Financial Econometrics and Engineering (JAFEE), is expected to provide an international forum for researchers and practitioners in academia, industry, and government, who engage in empirical and/or theoretical research into the financial markets. We invite submission of quality papers on all aspects of finance and financial engineering.
Here we interpret the term ''financial engineering'' broadly enough to cover such topics as financial time series, portfolio analysis, global asset allocation, trading strategy for investment, optimization methods, macro monetary economic analysis and pricing models for various financial assets including derivatives We stress that purely theoretical papers, as well as empirical studies that use Asia-Pacific market data, are welcome.
Officially cited as: Asia-Pac Financ Markets