Weak positive solutions to singular quasilinear elliptic equation
Chouhaïd Souissi, M. Hsini, N. Irzi, Wakaa Ali Hadba
求助PDF
{"title":"Weak positive solutions to singular quasilinear elliptic equation","authors":"Chouhaïd Souissi, M. Hsini, N. Irzi, Wakaa Ali Hadba","doi":"10.1515/gmj-2024-2020","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this paper, we study the existence of multiple solutions for the\nsingular problem</jats:p>\n <jats:p>\n <jats:disp-formula id=\"j_gmj-2024-2020_eq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo>{</m:mo>\n <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\">\n <m:mtr>\n <m:mtd columnalign=\"right\">\n <m:mrow>\n <m:mrow>\n <m:mi>a</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>x</m:mi>\n <m:mo>,</m:mo>\n <m:mi>u</m:mi>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n <m:mo></m:mo>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>-</m:mo>\n <m:mrow>\n <m:mi>div</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mi>b</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>x</m:mi>\n <m:mo>,</m:mo>\n <m:mi>u</m:mi>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n <m:mo></m:mo>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mrow>\n <m:mi />\n <m:mo>=</m:mo>\n <m:mrow>\n <m:msup>\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>-</m:mo>\n <m:mi>α</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>+</m:mo>\n <m:mrow>\n <m:mi>λ</m:mi>\n <m:mo></m:mo>\n <m:mi>c</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>x</m:mi>\n <m:mo>,</m:mo>\n <m:mi>u</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:mtd>\n <m:mtd />\n <m:mtd columnalign=\"right\">\n <m:mrow>\n <m:mrow>\n <m:mtext>in </m:mtext>\n <m:mo></m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:mrow>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"right\">\n <m:mi>u</m:mi>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mrow>\n <m:mi />\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:mtd>\n <m:mtd />\n <m:mtd columnalign=\"right\">\n <m:mrow>\n <m:mrow>\n <m:mtext>in </m:mtext>\n <m:mo></m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:mrow>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"right\">\n <m:mi>u</m:mi>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mrow>\n <m:mi />\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:mtd>\n <m:mtd />\n <m:mtd columnalign=\"right\">\n <m:mrow>\n <m:mrow>\n <m:mrow>\n <m:mtext>on </m:mtext>\n <m:mo></m:mo>\n <m:msup>\n <m:mi>ℝ</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n </m:mrow>\n <m:mo>∖</m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n <m:mo>,</m:mo>\n </m:mrow>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:math>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2020_eq_0141.png\" />\n <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}a(x,u,\\nabla u)-{\\rm div}(b(x,u,\\nabla u%\n))&\\displaystyle=u^{-\\alpha}+\\lambda c(x,u)&&\\displaystyle\\phantom{}\\text{in }%\n\\Omega,\\\\\n\\displaystyle u&\\displaystyle>0&&\\displaystyle\\phantom{}\\text{in }\\Omega,\\\\\n\\displaystyle u&\\displaystyle=0&&\\displaystyle\\phantom{}\\text{on }{\\mathbb{R}}%\n^{n}\\setminus\\Omega,\\end{aligned}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula>\n </jats:p>\n <jats:p>where <jats:inline-formula id=\"j_gmj-2024-2020_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n ","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this paper, we study the existence of multiple solutions for the
singular problem
{
a
(
x
,
u
,
∇
u
)
-
div
(
b
(
x
,
u
,
∇
u
)
)
=
u
-
α
+
λ
c
(
x
,
u
)
in
Ω
,
u
>
0
in
Ω
,
u
=
0
on
ℝ
n
∖
Ω
,
\left\{\begin{aligned} \displaystyle{}a(x,u,\nabla u)-{\rm div}(b(x,u,\nabla u%
))&\displaystyle=u^{-\alpha}+\lambda c(x,u)&&\displaystyle\phantom{}\text{in }%
\Omega,\\
\displaystyle u&\displaystyle>0&&\displaystyle\phantom{}\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }{\mathbb{R}}%
^{n}\setminus\Omega,\end{aligned}\right.
where
Ω
⊂
奇异准线性椭圆方程的弱正解
在本文中,我们研究了存在多解的奇异问题 { a ( x , u ,∇ u ) - div ( b ( x , u ,∇ u ) ) = u - α + λ c ( x , u ) in Ω , u > 0
本文章由计算机程序翻译,如有差异,请以英文原文为准。